版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆吉林省舒蘭一中,蛟河一中等百校聯(lián)盟高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線的焦點到漸近線的距離為()A. B.C. D.2.在正四面體中,棱長為2,且E是棱AB中點,則的值為A. B.1C. D.3.設(shè)函數(shù),若為奇函數(shù),則曲線在點處的切線方程為()A. B.C. D.4.橢圓:與雙曲線:的離心率之積為2,則雙曲線的漸近線方程為()A. B.C. D.5.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.在平行六面體中,,,,則()A. B.5C. D.37.已知橢圓的左右焦點分別為、,點在橢圓上,若、、是一個直角三角形的三個頂點,則點到軸的距離為A B.4C. D.8.在流行病學(xué)中,基本傳染數(shù)是指在沒有外力介入,同時所有人都沒有免疫力的情況下,一個感染者平均傳染的人數(shù).一般由疾病的感染周期、感染者與其他人的接觸頻率、每次接觸過程中傳染的概率決定.假設(shè)某種傳染病的基本傳染數(shù),平均感染周期為4天,那么感染人數(shù)超過1000人大約需要()(初始感染者傳染個人為第一輪傳染,這個人每人再傳染個人為第二輪傳染)A.20天 B.24天C.28天 D.32天9.設(shè)變量,滿足約束條件,則的最大值為()A.1 B.6C.10 D.1310.設(shè)是雙曲線的兩個焦點,為坐標原點,點在上且,則的面積為()A. B.3C. D.211.某公司有320名員工,將這些員工編號為1,2,3,…,320,從這些員工中使用系統(tǒng)抽樣的方法抽取20人進行“學(xué)習(xí)強國”的問卷調(diào)查,若54號被抽到,則下面被抽到的是()A.72號 B.150號C.256號 D.300號12.設(shè)R,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.從1,3,5,7中任取2個數(shù)字,從0,2,4,6,8中任取2個數(shù)字,組成沒有重復(fù)數(shù)字的四位數(shù),這樣的四位數(shù)一共有___________個.(用數(shù)字作答)14.已知直線和平面,且;①若異面,則至少有一個與相交;②若垂直,則至少有一個與垂直;對于以上命題中,所有正確的序號是___________.15.已知,分別是橢圓和雙曲線的離心率,,是它們的公共焦點,M是它們的一個公共點,且,則的最大值為______16.如圖,橢圓的左右焦點為,,以為圓心的圓過原點,且與橢圓在第一象限交于點,若過、的直線與圓相切,則直線的斜率______;橢圓的離心率______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,橢圓C:(a>b>0)的左、右焦點分別為,其離心率,且橢圓C經(jīng)過點.(1)求橢圓C的標準方程;(2)過點M作兩條不同的直線與橢圓C分別交于點A,B(均異于點M).若∠AMB的角平分線與y軸平行,試探究直線AB的斜率是否為定值?若是,請給予證明;若不是,請說明理由.18.(12分)如圖,扇形AOB的半徑為2,圓心角,點C為弧AB上一點,平面AOB且,點且,面MOC(1)求證:平面平面POB;(2)求平面POA與平面MOC所成二面角的正弦值的大小19.(12分)已知各項為正數(shù)的等比數(shù)列中,,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前n項和.20.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足bcosA+(2c+a)cosB=0(1)求角B的大??;(2)若b=4,△ABC的面積為,求a+c的值21.(12分)已知的展開式中,第4項的系數(shù)與倒數(shù)第4項的系數(shù)之比為.(1)求m的值;(2)求展開式中所有項的系數(shù)和與二項式系數(shù)和.22.(10分)已知拋物線C:,直線l經(jīng)過點,且與拋物線C交于M,N兩點,其中.(1)若,且,求點M的坐標;(2)是否存在正數(shù)m,使得以MN為直徑的圓經(jīng)過坐標原點O,若存在,請求出正數(shù)m,若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)題意,由雙曲線的標準方程可得雙曲線的焦點坐標以及漸近線方程,由點到直線的距離公式計算可得答案.【詳解】解:根據(jù)題意,雙曲線的方程為,其焦點坐標為,其漸近線方程為,即,則其焦點到漸近線的距離;故選D.【點睛】本題考查雙曲線的幾何性質(zhì),關(guān)鍵是求出雙曲線的漸近線與焦點坐標.2、A【解析】根據(jù)題意,由正四面體的性質(zhì)可得:,可得,由E是棱中點,可得,代入,利用數(shù)量積運算性質(zhì)即可得出.【詳解】如圖所示由正四面體的性質(zhì)可得:可得:是棱中點故選:【點睛】本題考查空間向量的線性運算,考查立體幾何中的垂直關(guān)系,考查轉(zhuǎn)化與化歸思想,屬于中等題型.3、C【解析】利用函數(shù)的奇偶性求出,求出函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義,利用點斜式即可求出結(jié)果【詳解】函數(shù)的定義域為,若為奇函數(shù),則則,即,所以,所以函數(shù),可得;所以曲線在點處的切線的斜率為,則曲線在點處的切線方程為,即故選:C4、C【解析】先求出橢圓的離心率,再由題意得出雙曲線的離心率,根據(jù)離心率即可求出漸近線斜率得解.【詳解】橢圓:的離心率為,則,依題意,雙曲線;的離心率為,而,于是得,解得:,所以雙曲線的漸近線方程為故選:C5、C【解析】利用函數(shù)在上單調(diào)遞減即可求解.【詳解】解:因為函數(shù)在上單調(diào)遞減,所以若,,則;反之若,,則.所以若,則“”是“”的充要條件,故選:C.6、B【解析】由,則結(jié)合已知條件及模長公式即可求解.【詳解】解:,所以,所以,故選:B.7、D【解析】設(shè)橢圓短軸的一個端點為根據(jù)橢圓方程求得c,進而判斷出,即得或令,進而可得點P到x軸的距離【詳解】解:設(shè)橢圓短軸的一個端點為M由于,,;,只能或令,得,故選D【點睛】本題主要考查了橢圓的基本應(yīng)用考查了學(xué)生推理和實際運算能力是基礎(chǔ)題8、B【解析】根據(jù)題意列出方程,利用等比數(shù)列的求和公式計算n輪傳染后感染的總?cè)藬?shù),得到指數(shù)方程,求得近似解,然后可得需要的天數(shù).【詳解】感染人數(shù)由1個初始感染者增加到1000人大約需要n輪傳染,則每輪新增感染人數(shù)為,經(jīng)過n輪傳染,總共感染人數(shù)為:即,解得,所以感染人數(shù)由1個初始感染者增加到1000人大約需要24天,故選:B【點睛】等比數(shù)列基本量的求解是等比數(shù)列中的一類基本問題,解決這類問題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運用,尤其需要注意的是,在使用等比數(shù)列的前n項和公式時,應(yīng)該要分類討論,有時還應(yīng)善于運用整體代換思想簡化運算過程9、C【解析】畫出約束條件表示的平面區(qū)域,將變形為,可得需要截距最小,觀察圖象,可得過點時截距最小,求出點A坐標,代入目標式即可.【詳解】解:畫出約束條件表示的平面區(qū)域如圖中陰影部分:又,即,要取最大值,則在軸上截距要最小,觀察圖象可得過點時截距最小,由,得,則.故選:C.10、B【解析】由是以P為直角直角三角形得到,再利用雙曲線的定義得到,聯(lián)立即可得到,代入中計算即可.【詳解】由已知,不妨設(shè),則,因為,所以點在以為直徑的圓上,即是以P為直角頂點的直角三角形,故,即,又,所以,解得,所以故選:B【點晴】本題考查雙曲線中焦點三角形面積的計算問題,涉及到雙曲線的定義,考查學(xué)生的數(shù)學(xué)運算能力,是一道中檔題.11、B【解析】根據(jù)系統(tǒng)抽樣分成20個小組,每組16人中抽一人,故抽到的序號相差16的整數(shù)倍,即可求解.【詳解】∵用系統(tǒng)抽樣的方法從320名員工中抽取一個容量為20的樣本∴,即每隔16人抽取一人∵54號被抽到∴下面被抽到的是54+16×6=150號,而其他選項中的數(shù)字不滿足與54相差16的整數(shù)倍,故答案為:B故選:B12、A【解析】根據(jù)不等式性質(zhì)判斷即可.【詳解】若“”,則成立;反之,若,當,時,不一定成立.如,但.故“”是“”的充分不必要條件.故答案為:A.【點睛】本題考查充分條件、必要調(diào)價的判斷,考查不等式與不等關(guān)系,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1296【解析】根據(jù)取出的數(shù)字是否含有零,分類討論,若不含零,則有四位數(shù)個,若含有零,則有四位數(shù)個,再根據(jù)分類加法計數(shù)原理即可求出【詳解】若取出的數(shù)字中不含零,則有四位數(shù)個;若取出的數(shù)字中含零,則有四位數(shù)個;所以,這樣的四位數(shù)有個故答案為:129614、①②【解析】假設(shè)與都不相交得到,得到①正確,若不垂直,上取一點,作交于,得到,得到②正確,得到答案.【詳解】若與都不相交,,,則,同理,故,與異面矛盾,①正確;若不垂直,上取一點,作交于,,,故,,故,,,故,,,故,②正確.故答案為:①②.15、【解析】利用橢圓、雙曲線的定義以及余弦定理找到的關(guān)系,然后利用三角換元求最值即可.【詳解】解析:設(shè)橢圓的長半軸為a,雙曲線的實半軸為,半焦距為c,設(shè),,,因為,所以由余弦定理可得,①在橢圓中,,①化簡為,即,②在雙曲線中,,①化簡為,即,③聯(lián)立②③得,,即,記,,,則,當且僅當,即,時取等號故答案為:.16、①.②.【解析】根據(jù)直角三角形的性質(zhì)求得,由此求得,結(jié)合橢圓的定義求得離心率.【詳解】連接,由于是圓的切線,所以.在中,,所以,所以,所以直線的斜率.,根據(jù)橢圓的定義可知.故答案為:;【點睛】本小題主要考查橢圓的定義、橢圓的離心率,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)是,證明見解析【解析】(1)根據(jù)離心率及橢圓上的點可求解;(2)根據(jù)題意分別設(shè)出直線MA、MB,與橢圓聯(lián)立后得到相關(guān)點的坐標,再通過斜率公式計算即可證明.【小問1詳解】由,得,所以a2=9b2①,又橢圓過點,則②,由①②解得a=6,b=2,所以橢圓的標準方程為【小問2詳解】設(shè)直線MA的斜率為k,點,因為∠AMB的平分線與y軸平行,所以直線MA與MB的斜率互為相反數(shù),則直線MB的斜率為-k.聯(lián)立直線MA與橢圓方程,得整理,得,所以,同理可得,所以,又所以為定值.18、(1)證明見解析(2)【解析】(1)連接,設(shè)與相交于點,連接MN,利用余弦定理可求得,,的長度,進而得到,又,由此可得平面,最后利用面面垂直的判定定理即可得證;(2)建立恰當空間直角坐標系,求出兩個平面的法向量,然后利用向量法求解二面角的余弦值,從而即可得答案【小問1詳解】證明:連接,設(shè)與相交于點,連接MN,平面,在平面內(nèi),平面平面,,,,在中,由余弦定理可得,,,又在中,,由余弦定理可得,,,故,又平面,在平面內(nèi),,又,平面,又平面,平面平面;【小問2詳解】解:由(1)可知直線,,兩兩互相垂直,所以以點為坐標原點,建立如圖所示的空間直角坐標系,則,所以,,設(shè)平面的一個法向量為,則,可??;設(shè)平面的一個法向量為,則,可取,,平面與平面所成二面角的正弦值為19、(1);(2)【解析】(1)根據(jù)條件求出即可;(2),然后利用等差數(shù)列的求和公式求出答案即可.【詳解】(1)且,,(2)20、(1)(2)【解析】(1)利用正弦定理化簡,通過兩角和與差的三角函數(shù)求出,即可得到結(jié)果(2)利用三角形的面積求出,通過由余弦定理求解即可【詳解】解:(1)因為bcosA=(2c+a)cos(π﹣B),所以sinBcosA=(﹣2sinC﹣sinA)cosB所以sin(A+B)=﹣2sinCcosB∴cosB=﹣∴B=(2)由=得ac=4由余弦定理得b2=a2+c2+ac=(a+c)2+ac=16∴a+c=2【點睛】本題主要考查了利用正、余弦定理及三角形的面積公式解三角形問題,其中在解有關(guān)三角形的題目時,要有意識地考慮用哪個定理更合適,或是兩個定理都要用.一般地,如果式子中含有角的余弦或邊的二次式時,要考慮用余弦定理;如果式子中含有角的正弦或邊的一次式時,則考慮用正弦定理;以上特征都不明顯時,則要考慮兩個定理都有可能用到21、(1)(2)所有項的系數(shù)和為,二項式系數(shù)和為【解析】(1)寫出展開式的通項,求出其第4項系數(shù)和倒數(shù)第4項系數(shù),列出方程即可求出m的值;(2)令x=1即可求所有展開項系數(shù)之和,二項式系數(shù)之和為2m.【小問1詳解】展開式的通項為:,∴展開式中第4項的系數(shù)為,倒數(shù)第4項的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版機械行業(yè)科技創(chuàng)新合作合同書3篇
- 二零二五版藝術(shù)品字畫購銷與倉儲管理合同2篇
- 二零二五版農(nóng)業(yè)用地土壤環(huán)境質(zhì)量調(diào)查委托合同3篇
- 二零二五版LED顯示屏安全防護與應(yīng)急響應(yīng)合同3篇
- 美容院商鋪租賃合同(2025版):美容院美容美體設(shè)備租賃及售后服務(wù)協(xié)議2篇
- 二零二五年綠色建筑空調(diào)系統(tǒng)設(shè)計與施工合同3篇
- 二零二五版廢舊設(shè)備買賣及環(huán)保處理合同2篇
- 二零二五版房地產(chǎn)投資合作三方買賣合同3篇
- 二零二五版二手車鑒定評估及轉(zhuǎn)讓合同3篇
- 2025年度不銹鋼太陽能板安裝工程合同3篇
- GB/T 12914-2008紙和紙板抗張強度的測定
- GB/T 1185-2006光學(xué)零件表面疵病
- ps6000自動化系統(tǒng)用戶操作及問題處理培訓(xùn)
- 家庭教養(yǎng)方式問卷(含評分標準)
- 城市軌道交通安全管理課件(完整版)
- 線纜包覆擠塑模設(shè)計和原理
- TSG ZF001-2006 安全閥安全技術(shù)監(jiān)察規(guī)程
- 部編版二年級語文下冊《蜘蛛開店》
- 鍋爐升降平臺管理
- 200m3╱h凈化水處理站設(shè)計方案
- 個體化健康教育記錄表格模板1
評論
0/150
提交評論