2025屆廣東省茂名市五校聯(lián)考高二數(shù)學第一學期期末綜合測試試題含解析_第1頁
2025屆廣東省茂名市五校聯(lián)考高二數(shù)學第一學期期末綜合測試試題含解析_第2頁
2025屆廣東省茂名市五校聯(lián)考高二數(shù)學第一學期期末綜合測試試題含解析_第3頁
2025屆廣東省茂名市五校聯(lián)考高二數(shù)學第一學期期末綜合測試試題含解析_第4頁
2025屆廣東省茂名市五校聯(lián)考高二數(shù)學第一學期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆廣東省茂名市五校聯(lián)考高二數(shù)學第一學期期末綜合測試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設拋物線的焦點為,點為拋物線上一點,點坐標為,則的最小值為()A. B.C. D.2.如圖,用4種不同的顏色對A,B,C,D四個區(qū)域涂色,要求相鄰的兩個區(qū)域不能用同一種顏色,則不同的涂色方法有()A.24種 B.48種C.72種 D.96種3.已知直線平分圓C:,則最小值為()A.3 B.C. D.4.已知數(shù)列滿足:且,則此數(shù)列的前20項的和為()A.621 B.622C.1133 D.11345.已知點,,直線:與線段相交,則實數(shù)的取值范圍是()A.或 B.或C. D.6.已知雙曲線的離心率為2,則()A.2 B.C. D.17.已知長方體中,,,則直線與所成角的余弦值是()A. B.C. D.8.在等差數(shù)列中,,且,,,構成等比數(shù)列,則公差()A.0或2 B.2C.0 D.0或9.在中國共產(chǎn)黨建黨100周年之際,廣安市某中學組織了“黨史知識競賽”活動,已知該校共有高中學生1000人,用分層抽樣的方法從該校高中學生中抽取一個容量為25的樣本參加活動,其中高二年級抽取了8人,則該校高二年級學生人數(shù)為()A.960 B.720C.640 D.32010.在等比數(shù)列中,,則的公比為()A. B.C. D.11.直線的傾斜角,則其斜率的取值范圍為()A. B.C. D.12.已知函數(shù)的導數(shù)為,且滿足,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.無窮數(shù)列滿足:只要必有,則稱為“和諧遞進數(shù)列”,已知為“和諧遞進數(shù)列”,且前四項成等比數(shù)列,,,則__________,若數(shù)列前項和為,則__________.14.過點且與直線平行的直線的方程是______.15.過圓上一點的圓的切線的一般式方程為________16.已知數(shù)列的前項和,則該數(shù)列的首項__________,通項公式__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在①,②,③這三個條件中任選一個,補充在下面橫線上,并解答.在中,內(nèi)角,,的對邊分別為,,,且___________.(1)求角的大??;(2)已知,,點在邊上,且,求線段的長.注:如果選擇多個條件分別解答,按第一個解答計分.18.(12分)如圖,在四棱錐P-ABCD中,底面四邊形ABCD為直角梯形,,,,O為BD的中點,,(1)證明:平面ABCD;(2)求平面PAD與平面PBC所成銳二面角的余弦值19.(12分)已知.(1)當時,求曲線在點處的切線方程;(2)若在處取得極值,求在上的最小值.20.(12分)已知等差數(shù)列}的公差為整數(shù),為其前n項和,,(1)求{}的通項公式:(2)設,數(shù)列的前n項和為,求21.(12分)已知數(shù)列的前項和為,且(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和22.(10分)已知函數(shù),.(1)當時,求不等式的解集;(2)若在上恒成立,求取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設點P在準線上的射影為D,則根據(jù)拋物線的定義可知|PF|=|PD|,進而把問題轉(zhuǎn)化為求|PM|+|PD|的最小值,即可求解【詳解】解:由題意,設點P在準線上的射影為D,則根據(jù)拋物線的定義可知|PF|=|PD|,所以要求|PM|+|PF|的最小值,即求|PM|+|PD|的最小值,當D,P,M三點共線時,|PM|+|PD|取得最小值為故選:B2、B【解析】按涂色順序進行分四步,根據(jù)分步乘法計數(shù)原理可得解.【詳解】按涂色順序進行分四步:涂A部分時,有4種涂法;涂B部分時,有3種涂法;涂C部分時,有2種涂法;涂D部分時,有2種涂法.由分步乘法計數(shù)原理,得不同的涂色方法共有種.故選:B.3、D【解析】根據(jù)直線過圓心求得,再利用基本不等式求和的最小值即可.【詳解】根據(jù)題意,直線過點,即,則,當且僅當,即時取得最小值.故選:D.4、C【解析】這個數(shù)列的奇數(shù)項是公差為2的等差數(shù)列,偶數(shù)項是公比為2的等比數(shù)列,只要分開來計算即可.【詳解】由于,所以當n為奇數(shù)時,是等差數(shù)列,即:共10項,和為;,共10項,其和為;∴該數(shù)列前20項的和;故選:C.5、A【解析】由可求出直線過定點,作出圖象,求出和,數(shù)形結合可得或,即可求解.【詳解】由可得:,由可得,所以直線:過定點,由可得,作出圖象如圖所示:,,若直線與線段相交,則或,解得或,所以實數(shù)的取值范圍是或,故選:A.6、D【解析】由雙曲線的性質(zhì),直接表示離心率,求.【詳解】由雙曲線方程可知,因為,所以,解得:,又,所以.故選:D【點睛】本題考查雙曲線基本性質(zhì),意在考查數(shù)形結合分析問題和解決問題能力,屬于中檔題型,一般求雙曲線離心率的方法:

直接法:直接求出,然后利用公式求解;2.公式法:,3.構造法:根據(jù)條件,可構造出的齊次方程,通過等式兩邊同時除以,進而得到關于的方程.7、C【解析】建立空間直角坐標系,設直線與所成角為,由求解.【詳解】∵長方體中,,,∴分別以,,為,,軸建立如圖所示空間直角坐標系,,則,,,,所以,,設直線與所成角為,則,∴直線和夾角余弦值是.故選:C.8、A【解析】根據(jù)等比中項的性質(zhì)和等差數(shù)列的通項公式建立方程,可解得公差d得選項.【詳解】解:因為在等差數(shù)列中,,且,,,構成等比數(shù)列,所以,即,所以,解得或,故選:A.9、D【解析】由分層抽樣各層成比例計算即可【詳解】設高二年級學生人數(shù)為,則,解得故選:D10、D【解析】利用等比數(shù)列的性質(zhì)把方程都變成和有關的式子后進行求解.【詳解】由等比數(shù)列的等比中項性質(zhì)可得,又,所以,因,所以,所以,故選:D.11、B【解析】根據(jù)傾斜角和斜率的關系,確定正確選項.【詳解】直線的傾斜角為,則斜率為,在上為增函數(shù).由于直線的傾斜角,所以其斜率的取值范圍為,即.故選:B【點睛】本小題主要考查傾斜角和斜率的關系,屬于基礎題.12、C【解析】首先求出,再令即可求解.【詳解】由,則,令,則,所以.故選:C【點睛】本題主要考查了基本初等函數(shù)的導數(shù)以及導數(shù)的基本運算法則,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、①.2②.7578【解析】根據(jù)前四項成等比數(shù)列及定義可求得,根據(jù)新定義得數(shù)列是周期數(shù)列,從而易求得【詳解】∵成等比數(shù)列,,,又,為“和諧遞進數(shù)列”,,,,,…,數(shù)列是周期數(shù)列,周期為4,故答案為:2,757814、【解析】設出直線的方程,代入點的坐標,求出直線的方程.【詳解】設過點且與直線平行的直線的方程為,將代入,則,解得:,所以直線的方程為.故答案為:15、【解析】求出過切線的半徑所在直線斜率,由垂直關系得切線斜率,然后得直線方程,現(xiàn)化為一般式【詳解】圓心為,,所以切線的斜率為,切線方程為,即故答案為:【點睛】本題考查求過圓上一點的圓的切線方程,利用切線性質(zhì)求得斜率后易得直線方程16、①.;②..【解析】空一:利用代入法直接進行求解即可;空二:利用之間的關系進行求解即可.【詳解】空一:;空二:當時,,顯然不適合上式,所以,故答案為:;三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)若選①,則根據(jù)正弦定理,邊化角,結合二倍角公式,求得,可得答案;若選②,則根據(jù)余弦定理和三角形面積公式,將化簡,求得,可得答案;若選③,則切化弦,化簡可得到的值,求得答案;(2)由余弦定理求出,進而求得,設,,在中用余弦定理列出方程,求得答案.【小問1詳解】若選①,則根據(jù)正弦定理可得:,由于,,故,則;若選②,則,即,則,而,故;若選③,則,即,則,而,故;【小問2詳解】如圖示:,故,故,在中,設,則,則,即,解得,或(舍去)故.18、(1)見解析(2)【解析】(1)連接,利用勾股定理證明,又可證明,根據(jù)線面垂直的判定定理證明即可;(2)建立合適的空間直角坐標系,求出所需點的坐標和向量的坐標,然后利用待定系數(shù)法求出平面和平面的法向量,由向量的夾角公式求解即可小問1詳解】證明:如圖,連接,在中,由,可得,因為,,所以,,因為,,,則,故,因為,,,平面,則平面;【小問2詳解】解:由(1)可知,,,兩兩垂直,以點為坐標原點,建立空間直角坐標系如圖所示,則,0,,,0,,,0,,,2,,,0,,所以,則,,,又,設平面的法向量為,則,令,則,,故,設平面的法向量為,因為,所以,令,則,,故,所以,故平面與平面所成銳二面角的余弦值為19、(1);(2).【解析】(1)利用導數(shù)的幾何意義求切線的斜率,再利用點斜式方程即可求出切線方程;(2)根據(jù)極值點求出的值,根據(jù)導數(shù)值的正負判斷函數(shù)的單調(diào)性,即可求出最小值.【小問1詳解】∵,,∴∴∴在處的切線為,即;【小問2詳解】∵,由題可知,∴,∴單調(diào)遞增,單調(diào)遞減,∵,,∴.20、(1)(2)【解析】(1)根據(jù)題意利用等差數(shù)列的性質(zhì)列出方程,即可解得答案;(2)根據(jù)(1)的結果,求出的表達式,利用裂項求和的方法求得答案.小問1詳解】設等差數(shù)列{}的公差為d,則,整理可得:,∵d是整數(shù),解得,從而,所以數(shù)列{}的通項公式為:;【小問2詳解】由(1)知,,所以21、(1)(2)【解析】(1)結合作差法可直接

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論