版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省廣州市增城區(qū)四校2025屆高二上數(shù)學(xué)期末聯(lián)考試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知是雙曲線的左焦點(diǎn),,是雙曲線右支上的動(dòng)點(diǎn),則的最小值為()A.9 B.8C.7 D.62.若函數(shù)有零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.3.已知斜率為1的直線與橢圓相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),AB的中點(diǎn)為P,若直線OP的斜率為,則橢圓C的離心率為()A. B.C. D.4.經(jīng)過(guò)點(diǎn)作圓的弦,使點(diǎn)為弦的中點(diǎn),則弦所在直線的方程為A. B.C. D.5.已知實(shí)數(shù)、滿足,則的最大值為()A. B.C. D.6.若關(guān)于x的方程有解,則實(shí)數(shù)a的取值范圍為()A. B.C. D.7.下面四個(gè)說(shuō)法中,正確說(shuō)法的個(gè)數(shù)為()(1)如果兩個(gè)平面有三個(gè)公共點(diǎn),那么這兩個(gè)平面重合;(2)兩條直線可以確定一個(gè)平面;(3)若,,,則;(4)空間中,兩兩相交的三條直線在同一平面內(nèi).A.1 B.2C.3 D.48.已知命題p:,總有,則為()A.,使得 B.,使得C.,總有 D.,總有9.已知橢圓:的左、右焦點(diǎn)分別為、,為坐標(biāo)原點(diǎn),為橢圓上一點(diǎn).與軸交于一點(diǎn),,則橢圓C的離心率為()A. B.C. D.10.若直線的傾斜角為120°,則直線的斜率為()A. B.C. D.11.窗花是貼在窗紙或窗戶玻璃上的剪紙,是古老的傳統(tǒng)民間藝術(shù)之一.如圖是一個(gè)窗花的圖案,以正六邊形各頂點(diǎn)為圓心、邊長(zhǎng)為半徑作圓,陰影部分為其公共部分.現(xiàn)從該正六邊形中任取一點(diǎn),則此點(diǎn)取自于陰影部分的概率為()A. B.C. D.12.知點(diǎn)分別為圓上的動(dòng).點(diǎn),為軸上一點(diǎn),則的最小值()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的右焦點(diǎn)為,過(guò)點(diǎn)作軸的垂線,在第一象限與雙曲線及其漸近線分別交于,兩點(diǎn).若,則雙曲線的離心率為_(kāi)__________.14.若橢圓的焦點(diǎn)在軸上,且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,則______.15.,若2是與的等比中項(xiàng),則的最小值為_(kāi)__________.16.如圖,在棱長(zhǎng)為2的正方體中,點(diǎn)分別是棱的中點(diǎn),是側(cè)面正方形內(nèi)一點(diǎn)(含邊界),若平面,則線段長(zhǎng)度的取值范圍是__________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),且a0(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;(2)記函數(shù),若函數(shù)有兩個(gè)零點(diǎn),①求實(shí)數(shù)a的取值范圍;②證明:18.(12分)已知拋物線的焦點(diǎn)為,直線與拋物線的準(zhǔn)線交于點(diǎn),為坐標(biāo)原點(diǎn),(1)求拋物線的方程;(2)直線與拋物線交于,兩點(diǎn),求的面積19.(12分)在中,(1)求的大?。唬?)若,.求的面積20.(12分)的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知.(1)求B(2)___________,若問(wèn)題中的三角形存在,試求出;若問(wèn)題中的三角形不存在,請(qǐng)說(shuō)明理由.在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在橫線上.注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.21.(12分)如圖,在四棱錐S?ABCD中,底面ABCD為矩形,,AB=2,,平面,,,E是SA的中點(diǎn)(1)求直線EF與平面SCD所成角的正弦值;(2)在直線SC上是否存在點(diǎn)M,使得平面MEF平面SCD?若存在,求出點(diǎn)M的位置;若不存在,請(qǐng)說(shuō)明理由22.(10分)已知在等差數(shù)列中,,(1)求數(shù)列的通項(xiàng)公式;(2)若的前n項(xiàng)和為,且,,求數(shù)列的前n項(xiàng)和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由雙曲線方程求出,再根據(jù)點(diǎn)在雙曲線的兩支之間,結(jié)合可求得答案【詳解】由,得,則,所以左焦點(diǎn)為,右焦點(diǎn),則由雙曲線的定義得,因?yàn)辄c(diǎn)在雙曲線的兩支之間,所以,所以,當(dāng)且僅當(dāng)三點(diǎn)共線時(shí)取等號(hào),所以的最小值為9,故選:A2、A【解析】設(shè),則函數(shù)有零點(diǎn)轉(zhuǎn)化為函數(shù)的圖象與直線有交點(diǎn),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,即可求出【詳解】設(shè),定義域?yàn)椋瑒t,易知為單調(diào)遞增函數(shù),且所以當(dāng)時(shí),,遞減;當(dāng)時(shí),,遞增,所以所以,即故選:A【點(diǎn)睛】本題主要考查根據(jù)函數(shù)有零點(diǎn)求參數(shù)的取值范圍,意在考查學(xué)生的轉(zhuǎn)化能力,屬于基礎(chǔ)題3、B【解析】這是中點(diǎn)弦問(wèn)題,注意斜率與橢圓a,b之間的關(guān)系.【詳解】如圖:依題意,假設(shè)斜率為1的直線方程為:,聯(lián)立方程:,解得:,代入得,故P點(diǎn)坐標(biāo)為,由題意,OP的斜率為,即,化簡(jiǎn)得:,,,;故選:B.4、A【解析】由題知為弦AB的中點(diǎn),可得直線與過(guò)圓心和點(diǎn)的直線垂直,可求的斜率,然后用點(diǎn)斜式求出的方程【詳解】由題意知圓的圓心為,,由,得,∴弦所在直線的方程為,整理得.選A.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,直線的斜率,直線的點(diǎn)斜式方程,屬于基礎(chǔ)題5、A【解析】作出可行域,利用代數(shù)式的幾何意義,利用數(shù)形結(jié)合可求得的最大值.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立可得,即點(diǎn),代數(shù)式的幾何意義是連接可行域內(nèi)一點(diǎn)與定點(diǎn)連線的斜率,由圖可知,當(dāng)點(diǎn)在可行域內(nèi)運(yùn)動(dòng)時(shí),直線的傾斜角為銳角,當(dāng)點(diǎn)與點(diǎn)重合時(shí),直線的傾斜角最大,此時(shí)取最大值,即.故選:A.6、C【解析】將方程有解,轉(zhuǎn)化為方程有解求解.【詳解】解:因?yàn)榉匠逃薪?,所以方程有解,因?yàn)椋?dāng)且僅當(dāng),即時(shí),等號(hào)成立,所以實(shí)數(shù)a的取值范圍為,故選:C7、A【解析】如果兩個(gè)平面有三個(gè)公共點(diǎn),那么這兩個(gè)平面重合或者是相交,即可判斷;利用兩條異面直線不能確定一個(gè)平面即可判斷;利用平面的基本性質(zhì)中的公理判斷即可;若兩兩相交的三條直線相交于同一點(diǎn),則相交于同一點(diǎn)的三直線不一定在同一平面內(nèi)(如棱錐的3條側(cè)棱),即可判斷.【詳解】如果兩個(gè)平面有三個(gè)公共點(diǎn),那么這兩個(gè)平面重合或者是相交,故(1)不正確;兩條異面直線不能確定一個(gè)平面,故(2)不正確;利用平面的基本性質(zhì)中的公理判斷(3)正確;空間中,若兩兩相交的三條直線相交于同一點(diǎn),則相交于同一點(diǎn)的三直線不一定在同一平面內(nèi)(如棱錐的3條側(cè)棱),故(4)不正確,綜上所述只有一個(gè)說(shuō)法是正確的,故選:A【點(diǎn)睛】本題主要考查了空間中點(diǎn),線,面的位置關(guān)系.屬于較易題.8、B【解析】由含有一個(gè)量詞的命題的否定的定義求解.【詳解】因?yàn)槊}p:,總有是全稱量詞命題,所以其否定為存在量詞命題,即,使得,故選:B9、C【解析】由橢圓的性質(zhì)可先求得,故可得,再由橢圓的定義得a,c的關(guān)系,故可得答案【詳解】,,又,,則,,則,,由橢圓的定義得,,,故選:C10、B【解析】求得傾斜角的正切值即得【詳解】k=tan120°=.故選:B11、D【解析】求得陰影部分的面積,結(jié)合幾何概型概率計(jì)算公式,計(jì)算出所求的概率.【詳解】設(shè)正六邊形的邊長(zhǎng)為,則其面積為.陰影部分面積為,故所求概率為.故選:D12、B【解析】求出圓關(guān)于軸的對(duì)稱圓的圓心坐標(biāo),以及半徑,然后求解圓與圓的圓心距減去兩個(gè)圓的半徑和,即可求出的最小值.【詳解】圓關(guān)于軸的對(duì)稱圓的圓心坐標(biāo),半徑為1,圓的圓心坐標(biāo)為,半徑為1,∴若與關(guān)于x軸對(duì)稱,則,即,當(dāng)三點(diǎn)不共線時(shí),當(dāng)三點(diǎn)共線時(shí),所以同理(當(dāng)且僅當(dāng)時(shí)取得等號(hào))所以當(dāng)三點(diǎn)共線時(shí),當(dāng)三點(diǎn)不共線時(shí),所以∴的最小值為圓與圓的圓心距減去兩個(gè)圓的半徑和,∴.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】按題意求得,兩點(diǎn)坐標(biāo),以代數(shù)式表達(dá)出條件,即可得到關(guān)于的關(guān)系式,進(jìn)而解得雙曲線的離心率.【詳解】雙曲線的右焦點(diǎn)為,其漸近線為,垂線方程為,則,,,由,得,即即,則,離心率故答案為:14、4【解析】根據(jù)橢圓焦點(diǎn)在軸上方程的特征進(jìn)行求解即可.【詳解】因?yàn)闄E圓的焦點(diǎn)在軸上,所以有,因?yàn)殚L(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,所以有,故答案為:415、3【解析】根據(jù)等比中項(xiàng)列方程,結(jié)合基本不等式求得的最小值.【詳解】由題可得,則,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故答案為:16、【解析】取的中點(diǎn)G,連接FG,BG,F(xiàn)B,由正方體的幾何特征,易證平面AEC//平面BFG,再根據(jù)是側(cè)面內(nèi)一點(diǎn)(含邊界),且平面,得到點(diǎn)P在線段BG上運(yùn)動(dòng),然后在等腰中求解.【詳解】如圖所示:取的中點(diǎn)G,連接FG,BG,F(xiàn)B,在正方體中,易得又因?yàn)槠矫鍮FG,平面BFG,所以平面BFG,同理證得平面BFG,又因?yàn)椋云矫鍭EC//平面BFG,因?yàn)槭莻?cè)面內(nèi)一點(diǎn)(含邊界),且平面,所以點(diǎn)P線段BG上運(yùn)動(dòng),如圖所示:在等腰中,作,且,所以,設(shè)點(diǎn)F到線段BG的距離為d,由等面積法得,解得,所以線段長(zhǎng)度的取值范圍是,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)函數(shù)f(x)在區(qū)間(0,+)上單調(diào)遞減(2)①;②證明見(jiàn)解析【解析】(1)求導(dǎo),求解可得導(dǎo)函數(shù)恒小于等于0,即得證;(2)①分析函數(shù)的單調(diào)性,由有兩個(gè)實(shí)數(shù)根可求解;②由(1)得2lnxx?,再利用其放縮可得,由此有,問(wèn)題得證.【小問(wèn)1詳解】當(dāng)a=1時(shí),函數(shù)因?yàn)樗院瘮?shù)f(x)在區(qū)間(0,+)上單調(diào)遞減;【小問(wèn)2詳解】(i)由已知可得方程有兩個(gè)實(shí)數(shù)根記,則.當(dāng)時(shí),,函數(shù)k(x)是增函數(shù);當(dāng)時(shí),,函數(shù)k(x)是減函數(shù),所以,故(ii)易知,當(dāng)x1時(shí),,故.由(1)可知,當(dāng)0x1時(shí),,所以2lnxx?由,得,所以因?yàn)?,所?8、(1)(2)【解析】(1)根據(jù)題意建立關(guān)于的方程,解得的值即可.(2)聯(lián)列方程組并消元,韋達(dá)定理整體思想求的長(zhǎng),再求點(diǎn)到直線的距離,進(jìn)而求面積.【小問(wèn)1詳解】由題意可得,,則,因?yàn)?,所以,解得,故拋物線的方程為【小問(wèn)2詳解】由(1)可知,則點(diǎn)到直線的距離聯(lián)立,整理得設(shè),,則,從而因?yàn)橹本€過(guò)拋物線的焦點(diǎn),所以故的面積為19、(1)(2)【解析】(1)利用正弦定理將邊化角,再根據(jù)兩角和的正弦公式及誘導(dǎo)公式得到,即可得解;(2)首先由余弦定理求出,即可得到,再根據(jù)面積公式計(jì)算可得;【小問(wèn)1詳解】解:因?yàn)?,由正弦定理可得,即,又在中,,所以,,所以;【小?wèn)2詳解】解:由余弦定理得,即,解得,所以,又,所以;.20、(1)(2)答案見(jiàn)解析【解析】(1)由正弦定理及正弦的兩角和公式可求解;(2)選擇條件①,由正弦定理及輔助角公式可求解;選擇條件②,由余弦定理及正切三角函數(shù)可求解;選擇條件③,由余弦定理可求解.【小問(wèn)1詳解】由,可得,則.∴,在中,,則,∵,∴,∴,∵,∴.【小問(wèn)2詳解】選擇條件①,在中,,可得,∵,∴,∴,根據(jù)輔助角公式,可得,∵,∴,即,故選擇條件②由,得,∵,∴,因此,,整理得,即,則.在中,,∴.故.選擇條件③由,得,即,整理得,由于,則方程無(wú)解,故不存在這樣的三角形.21、(1)(2)存在,M與S重合【解析】(1)分別取AB,BC中點(diǎn)M,N,易證兩兩互相垂直,以為正交基底,建立空間直角坐標(biāo)系,先求得平面SCD的一個(gè)法向量,再由求解;(2)假設(shè)存在點(diǎn)M,使得平面MEF平面SCD,再求得平面MEF的一個(gè)法向量,然后由求解.小問(wèn)1詳解】解:分別取AB,BC中點(diǎn)M,N,則,又平面則兩兩互相垂直,以為正交基底,建立如圖所示的空間直角坐標(biāo)系,,所以,設(shè)平面SCD的一個(gè)法向量為,,,則,,直線EF與平面SBC所成角的正弦值為.【小問(wèn)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度綠色金融創(chuàng)新產(chǎn)品開(kāi)發(fā)貸款合同3篇
- 2024質(zhì)保協(xié)議書范本
- 2024葡萄品種專項(xiàng)銷售代理協(xié)議版B版
- 2024跨區(qū)域連鎖加盟門店承包合同
- 2024版最正式的借款合同
- 二零二五年度電商綠色物流合作協(xié)議3篇
- 2024軟件許可合同 with 軟件功能與技術(shù)支持服務(wù)
- 二零二五年度陜西省旅游項(xiàng)目開(kāi)發(fā)合作合同2篇
- 西安文理學(xué)院《汽車試驗(yàn)技術(shù)及性能試驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年度國(guó)際貿(mào)易供應(yīng)鏈合同解析3篇
- 2024年公務(wù)員考試《公共基礎(chǔ)知識(shí)》全真模擬試題1000題及答案
- DB3301T 0382-2022 公共資源交易開(kāi)評(píng)標(biāo)數(shù)字見(jiàn)證服務(wù)規(guī)范
- 幼兒教育專業(yè)國(guó)家技能人才培養(yǎng)工學(xué)一體化課程設(shè)置方案
- 2025年會(huì)計(jì)從業(yè)資格考試電算化考試題庫(kù)及答案(共480題)
- 江蘇省無(wú)錫市2023-2024學(xué)年八年級(jí)上學(xué)期期末數(shù)學(xué)試題(原卷版)
- DL-T 5876-2024 水工瀝青混凝土應(yīng)用酸性骨料技術(shù)規(guī)范
- GB/T 44889-2024機(jī)關(guān)運(yùn)行成本統(tǒng)計(jì)指南
- 2024年6月英語(yǔ)六級(jí)考試真題及答案(第2套)
- 職業(yè)院校技能大賽(高職組)市政管線(道)數(shù)字化施工賽項(xiàng)考試題庫(kù)(含答案)
- 危險(xiǎn)化學(xué)品目錄(2024版)
- 華為經(jīng)營(yíng)管理-華為的股權(quán)激勵(lì)(6版)
評(píng)論
0/150
提交評(píng)論