版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
湖南省株洲市茶陵二中2025屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.饕餮(tāotiè)紋,青銅器上常見的花紋之一,盛行于商代至西周早期,最早出現(xiàn)在距今五千年前長江下游地區(qū)的良渚文化玉器上.有人將饕餮紋的一部分畫到了方格紙上,如圖所示,每個小方格的邊長為,有一點從點出發(fā)每次向右或向下跳一個單位長度,且向右或向下跳是等可能性的,那么它經(jīng)過次跳動后恰好是沿著饕餮紋的路線到達點的概率為()A. B.C. D.2.在等差數(shù)列中,,則的公差為()A.1 B.2C.3 D.43.已知空間四個點,,,,則直線AD與平面ABC所成的角為()A. B.C. D.4.如圖,在三棱柱中,為的中點,若,,,則下列向量與相等的是()A. B.C. D.5.如圖,在直三棱柱中,且,點E為中點.若平面過點E,且平面與直線AB所成角和平面與平面所成銳二面角的大小均為30°,則這樣的平面有()A.1個 B.2個C.3個 D.4個6.已知集合M={0,x},N={1,2},若M∩N={2},則M∪N=()A.{0,x,1,2} B.{2,0,1,2}C.{0,1,2} D.不能確定7.為了解一片大約一萬株樹木的生長情況,隨機測量了其中100株樹木的底部周長(單位:㎝).根據(jù)所得數(shù)據(jù)畫出的樣本頻率分布直方圖如圖,那么在這片樹木中,底部周長小于110㎝的株樹大約是()A.3000 B.6000C.7000 D.80008.在平面區(qū)域內(nèi)隨機投入一點P,則點P的坐標(biāo)滿足不等式的概率是()A. B.C. D.9.雙曲線的漸近線方程為()A. B.C. D.10.已知等差數(shù)列的前n項和為,,,若(),則n的值為()A.15 B.14C.13 D.1211.已知函數(shù)的導(dǎo)函數(shù)的圖像如圖所示,則下列說法正確的是()A.是函數(shù)的極大值點B.函數(shù)在區(qū)間上單調(diào)遞增C.是函數(shù)的最小值點D.曲線在處切線的斜率小于零12.概率論起源于賭博問題.法國著名數(shù)學(xué)家布萊爾帕斯卡遇到兩個賭徒向他提出的賭金分配問題:甲、乙兩賭徒約定先贏滿局者,可獲得全部賭金法郎,當(dāng)甲贏了局,乙贏了局,不再賭下去時,賭金如何分配?假設(shè)每局兩人輸贏的概率各占一半,每局輸贏相互獨立,那么賭金分配比較合理的是()A.甲法郎,乙法郎 B.甲法郎,乙法郎C.甲法郎,乙法郎 D.甲法郎,乙法郎二、填空題:本題共4小題,每小題5分,共20分。13.拋物線()上的一點到其焦點F的距離______.14.已知是首項為,公差為1的等差數(shù)列,數(shù)列滿足,若對任意的,都有成立,則實數(shù)的取值范圍是________15.拋物線上一點到其焦點的距離為,則的值為______16.直線l過點P(1,3),且它的一個方向向量為(2,1),則直線l的一般式方程為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知p:方程所表示的曲線為焦點在x軸上的橢圓;q:當(dāng)時,函數(shù)恒成立.(1)若p為真,求實數(shù)t的取值范圍;(2)若為假命題,且為真命題,求實數(shù)t的取值范圍18.(12分)已知雙曲線的左,右焦點為,離心率為.(1)求雙曲線C的漸近線方程;(2)過作斜率為k的直線l分別交雙曲線的兩條漸近線于A,B兩點,若,求k的值.19.(12分)已知橢圓C的兩焦點分別為,長軸長為6⑴求橢圓C的標(biāo)準(zhǔn)方程;⑵已知過點(0,2)且斜率為1的直線交橢圓C于A、B兩點,求線段AB的長度20.(12分)已知命題:方程有實數(shù)解,命題:,.(1)若是真命題,求實數(shù)的取值范圍;(2)若為假命題,且為真命題,求實數(shù)的取值范圍.21.(12分)如圖,四棱錐中,,且,(1)求證:平面平面;(2)若是等邊三角形,底面是邊長為3的正方形,是中點,求直線與平面所成角的正弦值.22.(10分)已知O為坐標(biāo)原點,點,設(shè)動點W到直線的距離為d,且,.(1)記動點W的軌跡為曲線C,求曲線C的方程;(2)若直線l與曲線C交于A,B兩點,直線與曲線C交于,兩點,直線l與的交點為P(P不在曲線C上),且,設(shè)直線l,的斜率分別為k,.求證:為定值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】本題首先可根據(jù)題意列出次跳動的所有基本事件,然后找出沿著饕餮紋的路線到達點的事件,最后根據(jù)古典概型的概率計算公式即可得出結(jié)果.【詳解】點從點出發(fā),每次向右或向下跳一個單位長度,次跳動的所有基本事件有:(右,右,右)、(右,右,下)、(右,下,右)、(下,右,右)、(右,下,下)、(下,右,下)、(下,下,右)、(下,下,下),沿著饕餮紋的路線到達點的事件有:(下,下,右),故到達點的概率,故選:B.2、A【解析】根據(jù)等差數(shù)列性質(zhì)可得方程組,求得公差.【詳解】等差數(shù)列中,,,由通項公式可得解得故選:A3、A【解析】根據(jù)向量法求出線面角即可.【詳解】設(shè)平面的法向量為,直線AD與平面ABC所成的角為令,則則故選:A【點睛】本題主要考查了利用向量法求線面角,屬于中檔題.4、A【解析】利用空間向量基本定理求解即可【詳解】由于M是的中點,所以故選:A5、B【解析】構(gòu)造出長方體,取中點連接然后利用臨界位置分情況討論即可.【詳解】如圖,構(gòu)造出長方體,取中點,連接則所有過點與成角的平面,均與以為軸的圓錐相切,過點繞且與成角,當(dāng)與水平面垂直且在面的左側(cè)(在長方體的外面)時,與面所成角為75°(與面成45°,與成30°),過點繞旋轉(zhuǎn),轉(zhuǎn)一周,90°顯然最大,到了另一個邊界(在面與之間)為15度,即與面所成角從75°→90°→15°→90°→75°變化,此過程中,有兩次角為30
,綜上,這樣的平面α有2個,故選:B.6、C【解析】集合M={0,x},N={1,2},若M∩N={2},則.所以.故選C.點睛:集合的交集即為由兩個集合的公共元素組成的集合,集合的并集即由兩集合的所有元素組成.7、C【解析】先由頻率分布直方圖得到抽取的樣本中底部周長小于110㎝的概率,進而可求出結(jié)果.【詳解】由頻率分布直方圖可得,樣本中底部周長小于110㎝的概率為,因此在這片樹木中,底部周長小于110㎝的株樹大約是.故選:C.【點睛】本題主要考查頻率分布直方圖的應(yīng)用,屬于基礎(chǔ)題型.8、A【解析】根據(jù)題意作出圖形,進而根據(jù)幾何概型求概率的方法求得答案.【詳解】根據(jù)題意作出示意圖,如圖所示:于,所求概率.故選:A.9、B【解析】把雙曲線的標(biāo)準(zhǔn)方程中的1換成0,可得其漸近線的方程【詳解】雙曲線的漸近線方程是,即,故選B【點睛】本題考查了雙曲線的標(biāo)準(zhǔn)方程與簡單的幾何性質(zhì)等知識,屬于基礎(chǔ)題10、B【解析】由已知條件列方程組求出,再由列方程求n的值【詳解】設(shè)等差數(shù)列的公差為,則由,,得,解得,因為,所以,即,解得或(舍去),故選:B11、B【解析】根據(jù)導(dǎo)函數(shù)的圖象,得到函數(shù)的單調(diào)區(qū)間與極值點,即可判斷;【詳解】解:由導(dǎo)函數(shù)的圖象可知,當(dāng)時,當(dāng)時,當(dāng)時,當(dāng)或時,則在上單調(diào)遞增,在上單調(diào)遞減,所以函數(shù)在處取得極小值即最小值,所以是函數(shù)的極小值點與最小值點,因為,所以曲線在處切線的斜率大于零,故選:B12、A【解析】利用獨立事件計算出甲、乙各自贏得賭金的概率,由此可求得兩人各分配的金額.【詳解】甲贏得法郎的概率為,乙贏得法郎的概率為,因此,這法郎中分配給甲法郎,分配給乙法郎.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將點坐標(biāo)代入方程中可求得拋物線的方程,從而可得到焦點坐標(biāo),進而可求出【詳解】解:為拋物線上一點,即有,,拋物線的方程為,焦點為,即有.故答案為:5.14、【解析】先求得,再得出,對于任意的,都有成立,說明是中的最小項【詳解】由題意,∴,易知函數(shù)在和上都是減函數(shù),且時,,即,時,,,由題意對于任意的,都有成立,則是最小項,∴,解得,故答案為:15、【解析】將拋物線方程化為標(biāo)準(zhǔn)方程,利用拋物線的定義將拋物線上的點到焦點的距離轉(zhuǎn)化為到準(zhǔn)線的距離,再利用點到直線的距離公式進行求解.【詳解】將拋物線化為,由拋物線定義得點到準(zhǔn)線的距離為,即,解得故答案為:.16、【解析】根據(jù)直線方向向量求出直線斜率即可得直線方程.【詳解】因為直線l的一個方向向量為(2,1),所以其斜率,所以l方程為:,即其一般式方程為:.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由給定條件結(jié)合橢圓標(biāo)準(zhǔn)方程的特征列不等式求解作答.(2)求命題q真時的t值范圍,再借助“或”聯(lián)結(jié)的命題為真命題求解作答.【小問1詳解】因方程所表示的曲線為焦點在x軸上的橢圓,則有,解得,所以實數(shù)t的取值范圍是.【小問2詳解】,則有,當(dāng)且僅當(dāng),即時取“=”,即,因當(dāng)時,函數(shù)恒成立,則,解得,命題q為真命題有,因為假命題,且為真命題,則與一真一假,當(dāng)p真q假時,,當(dāng)p假q真時,,所以實數(shù)t的取值范圍是.18、(1)(2)【解析】(1)由離心率可得雙曲線的漸近線方程;(2)設(shè),則的中點為,由,可得,然后的方程與雙曲線的漸近線方程聯(lián)立,利用韋達定理可得答案.【小問1詳解】設(shè),則,又,所以,得,所以雙曲線的漸近線方程為.【小問2詳解】由已知直線的傾斜角不是直角,,設(shè),則的中點為,,由,可知,所以,即,因為的方程為,雙曲線的漸近線方程可寫為,由消去y,得,所以,,所以,因為,所以,即.19、(1);(2)【解析】(1)由焦點坐標(biāo)可求c值,a值,然后可求出b的值.進而求出橢圓C的標(biāo)準(zhǔn)方程(2)先求出直線方程然后與橢圓方程聯(lián)立利用韋達定理及弦長公式求出|AB|的長度【詳解】解:⑴由,長軸長為6得:所以∴橢圓方程為⑵設(shè),由⑴可知橢圓方程為①,∵直線AB的方程為②把②代入①得化簡并整理得所以又【點睛】本題考查橢圓的方程和性質(zhì),考查韋達定理及弦長公式的應(yīng)用,考查運算能力,屬于中檔題20、(1)或;(2)【解析】(1)由方程有實數(shù)根則,可求出實數(shù)的取值范圍.(2)為真命題,即從而得出的取值范圍,由(1)可得出為假命題時實數(shù)的取值范圍.即可得出答案.【詳解】解:(1)方程有實數(shù)解得,,解之得或;(2)為假命題,則,為真命題時,,,則故.故為假命題且為真命題時,.【點睛】本題考查命題為真時求參數(shù)的范圍和兩個命題同時滿足條件時,求參數(shù)的范圍,屬于基礎(chǔ)題.21、(1)證明見解析(2)【解析】(1)根據(jù)線面垂直的判定定理,結(jié)合面面垂直的判定定理進行證明即可;(2)建立空間直角坐標(biāo)系,利用空間向量夾角公式,結(jié)合線面角定義進行求解即可.【小問1詳解】∵,∴,,又,∴,∵,面,∴面,平面ABCD,平面平面【小問2詳解】∵平面平面,交AD于點F,平面,平面平面,∴平面,以為原點,,的方向分別為軸,軸的正方向建立空間直角坐標(biāo)系,則,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025聯(lián)營合同(半緊密型) 管理資料
- 2025建安公司ERP系統(tǒng)與中國長安財務(wù)共享中心系統(tǒng)集成開發(fā)合同
- 課題申報參考:立德樹人視域下大學(xué)英語教材育人效果評估與機理研究
- 課題申報參考:科技創(chuàng)新、現(xiàn)代化產(chǎn)業(yè)體系與高水平對外開放研究
- 遠(yuǎn)程學(xué)習(xí)中的學(xué)生自我管理能力
- 教育科技助力下的團隊游戲化學(xué)習(xí)模式
- 科技驅(qū)動下的學(xué)校建筑設(shè)計新思路
- 跨領(lǐng)域?qū)嶒灲虒W(xué)合作模式探索
- 江西省吉安市2024-2025學(xué)年七年級上學(xué)期1月期末綜合道德與法治試題(含答案)
- 二零二五年度智能物流系統(tǒng)承攬合同GF2024版規(guī)范4篇
- 《醫(yī)院財務(wù)分析報告》課件
- 2025老年公寓合同管理制度
- 2024-2025學(xué)年人教版數(shù)學(xué)六年級上冊 期末綜合卷(含答案)
- 2024中國汽車后市場年度發(fā)展報告
- 感染性腹瀉的護理查房
- 天津市部分區(qū)2023-2024學(xué)年高二上學(xué)期期末考試 物理 含解析
- 《人工智能基礎(chǔ)》全套英語教學(xué)課件(共7章)
- GB/T 35613-2024綠色產(chǎn)品評價紙和紙制品
- 2022-2023學(xué)年五年級數(shù)學(xué)春季開學(xué)摸底考(四)蘇教版
- 【螞蟻?!?024中國商業(yè)醫(yī)療險發(fā)展研究藍皮書
- 軍事理論-綜合版智慧樹知到期末考試答案章節(jié)答案2024年國防大學(xué)
評論
0/150
提交評論