版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江西省南昌二中2025屆數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.?dāng)?shù)列,,,,…,的通項(xiàng)公式可能是()A. B.C. D.2.已知A,B,C三點(diǎn)不共線,O是平面ABC外一點(diǎn),下列條件中能確定點(diǎn)M與點(diǎn)A,B,C一定共面的是A. B.C. D.3.已知函數(shù),的導(dǎo)函數(shù),的圖象如圖所示,則的極值情況為()A.2個(gè)極大值,1個(gè)極小值 B.1個(gè)極大值,1個(gè)極小值C.1個(gè)極大值,2個(gè)極小值 D.1個(gè)極大值,無(wú)極小值4.已知,,且,則()A. B.C. D.5.如圖,在正方體中,是側(cè)面內(nèi)一動(dòng)點(diǎn),若到直線與直線的距離相等,則動(dòng)點(diǎn)的軌跡所在的曲線是()A.直線 B.圓C.雙曲線 D.拋物線6.將一張坐標(biāo)紙折疊一次,使點(diǎn)與重合,求折痕所在直線是()A. B.C. D.7.給出如下四個(gè)命題正確的是()①方程表示的圖形是圓;②橢圓的離心率;③拋物線的準(zhǔn)線方程是;④雙曲線的漸近線方程是A.③ B.①③C.①④ D.②③④8.已知直線和直線互相垂直,則等于()A.2 B.C.0 D.9.下列各式正確的是()A. B.C. D.10.復(fù)數(shù),且z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二象限,則實(shí)數(shù)m的值可以為()A.2 B.C. D.011.已知雙曲線右頂點(diǎn)為,以為圓心,為半徑作圓,圓與雙曲線的一條漸近線交于,兩點(diǎn),若,則的離心率為()A.2 B.C. D.12.設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.直線的一個(gè)法向量________.14.已知拋物線C:的焦點(diǎn)為F,過(guò)M(4,0)的直線交C于A、B兩點(diǎn),設(shè),的面積分別為、,則的最小值為_(kāi)_____15.已知,,且,則的最小值為_(kāi)_____.16.若無(wú)論實(shí)數(shù)取何值,直線與圓恒有兩個(gè)公共點(diǎn),則實(shí)數(shù)的取值范圍為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)我們知道:當(dāng)是圓O:上一點(diǎn),則圓O的過(guò)點(diǎn)的切線方程為;當(dāng)是圓O:外一點(diǎn),過(guò)作圓O的兩條切線,切點(diǎn)分別為,則方程表示直線AB的方程,即切點(diǎn)弦所在直線方程.請(qǐng)利用上述結(jié)論解決以下問(wèn)題:已知圓C的圓心在x軸非負(fù)半軸上,半徑為3,且與直線相切,點(diǎn)在直線上,過(guò)點(diǎn)作圓C的兩條切線,切點(diǎn)分別為.(1)求圓C的方程;(2)當(dāng)時(shí),求線段AB的長(zhǎng);(3)當(dāng)點(diǎn)在直線上運(yùn)動(dòng)時(shí),求線段AB長(zhǎng)度的最小值.18.(12分)在空間直角坐標(biāo)系Oxyz中,O為原點(diǎn),已知點(diǎn),,,設(shè)向量,.(1)求與夾角的余弦值;(2)若與互相垂直,求實(shí)數(shù)k的值.19.(12分)如圖,四棱錐中,是邊長(zhǎng)為2的正三角形,底面為菱形,且平面平面,,為上一點(diǎn),滿足.(1)證明:;(2)求二面角的余弦值.20.(12分)在中,角A,B,C所對(duì)的邊分別為a,b,c,且.(1)求角A的大??;(2)若,且的面積為,求的周長(zhǎng).21.(12分)在△中,已知、、分別是三內(nèi)角、、所對(duì)應(yīng)的邊長(zhǎng),且(Ⅰ)求角的大??;(Ⅱ)若,且△的面積為,求.22.(10分)已知直線l:x-y+2=0,一個(gè)圓的圓心C在x軸正半軸上,且該圓與直線l和y軸均相切(1)求該圓的方程;(2)若直線x+my-1=0與圓C交于A、B兩點(diǎn),且|AB|=,求m的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】利用數(shù)列前幾項(xiàng)排除A、B、C,即可得解;【詳解】解:由,排除A,C,由,排除B,分母為奇數(shù)列,分子為,故數(shù)列的通項(xiàng)公式可以為,故選:D2、D【解析】首先利用坐標(biāo)法,排除錯(cuò)誤選項(xiàng),然后對(duì)符合的選項(xiàng)驗(yàn)證存在使得,由此得出正確選項(xiàng).【詳解】不妨設(shè).對(duì)于A選項(xiàng),,由于的豎坐標(biāo),故不在平面上,故A選項(xiàng)錯(cuò)誤.對(duì)于B選項(xiàng),,由于的豎坐標(biāo),故不在平面上,故B選項(xiàng)錯(cuò)誤.對(duì)于C選項(xiàng),,由于的豎坐標(biāo),故不在平面上,故C選項(xiàng)錯(cuò)誤.對(duì)于D選項(xiàng),,由于的豎坐標(biāo)為,故在平面上,也即四點(diǎn)共面.下面證明結(jié)論一定成立:由,得,即,故存在,使得成立,也即四點(diǎn)共面.故選:D.【點(diǎn)睛】本小題主要考查空間四點(diǎn)共面的證明方法,考查空間向量的線性運(yùn)算,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.3、B【解析】根據(jù)圖象判斷的正負(fù),再根據(jù)極值的定義分析判斷即可【詳解】由,得,令,由圖可知的三個(gè)根即為與的交點(diǎn)的橫坐標(biāo),當(dāng)時(shí),,當(dāng)時(shí),,即,所以為的極大值點(diǎn),為的極大值,當(dāng)時(shí),,即,所以為的極小值點(diǎn),為的極小值,故選:B4、D【解析】利用空間向量共線的坐標(biāo)表示可求得、的值,即可得解.【詳解】因?yàn)椋瑒t,所以,,,因此,.故選:D5、D【解析】由到直線的距離等于到點(diǎn)的距離可得到直線的距離等于到點(diǎn)的距離,然后可得答案.【詳解】因?yàn)榈街本€的距離等于到點(diǎn)的距離,所以到直線的距離等于到點(diǎn)的距離,所以動(dòng)點(diǎn)的軌跡是以為焦點(diǎn)、為準(zhǔn)線的拋物線故選:D6、D【解析】設(shè),,則折痕所在直線是線段AB的垂直平分線,故求出AB中點(diǎn)坐標(biāo),折痕與直線AB垂直,進(jìn)而求出斜率,用點(diǎn)斜式求出折痕所在直線方程.【詳解】,,所以與的中點(diǎn)坐標(biāo)為,又,所以折痕所在直線的斜率為1,故折痕所在直線是,即.故選:D7、A【解析】對(duì)選項(xiàng)①,根據(jù)圓一般方程求解即可判斷①錯(cuò)誤,對(duì)選項(xiàng)②,求出橢圓離心率即可判斷②錯(cuò)誤,對(duì)③,求出拋物線漸近線即可判斷③正確,對(duì)④,求出雙曲線漸近線方程即可判斷④錯(cuò)誤?!驹斀狻繉?duì)于①選項(xiàng),,,故①錯(cuò)誤;對(duì)于②選項(xiàng),由題知,所以,所以離心率,故②錯(cuò)誤;對(duì)于③選項(xiàng),拋物線化為標(biāo)準(zhǔn)形式得拋物線,故準(zhǔn)線方程是,故③正確;對(duì)于④選項(xiàng),雙曲線化為標(biāo)準(zhǔn)形式得,所以,焦點(diǎn)在軸上,故漸近線方程是,故④錯(cuò)誤.故選:A8、D【解析】利用直線垂直系數(shù)之間的關(guān)系即可得出.【詳解】解:直線和直線互相垂直,則,解得:.故選:D.9、C【解析】利用導(dǎo)數(shù)的四則運(yùn)算即可求解.【詳解】對(duì)于A,,故A錯(cuò)誤;對(duì)于B,,故B錯(cuò)誤;對(duì)于C,,故C正確;對(duì)于D,,故D錯(cuò)誤;故選:C10、B【解析】根據(jù)復(fù)數(shù)的幾何意義求出的范圍,即可得出答案.【詳解】解:當(dāng)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二象限時(shí),則有,可得,結(jié)合選項(xiàng)可知,B正確故選:B11、B【解析】,得出到漸近線的距離為,由此可得的關(guān)系,從而求得離心率【詳解】因?yàn)?,而,所以是等邊三角形,到直線的距離為,又,漸近線方程取,即,所以,化簡(jiǎn)得故選:B12、A【解析】由三角函數(shù)的單調(diào)性直接判斷是否能推出,反過(guò)來(lái)判斷時(shí),是否能推出.【詳解】當(dāng)時(shí),利用正弦函數(shù)的單調(diào)性知;當(dāng)時(shí),或.綜上可知“”是“”的充分不必要條件.故選:A【點(diǎn)睛】本題考查判斷充分必要條件,三角函數(shù)性質(zhì),意在考查基本判斷方法,屬于基礎(chǔ)題型.二、填空題:本題共4小題,每小題5分,共20分。13、(答案不唯一)【解析】根據(jù)給定直線方程求出其方向向量,再由法向量意義求解作答.【詳解】直線的方向向量為,而,所以直線的一個(gè)法向量.故答案為:14、【解析】設(shè)直線的方程為,,與拋物線的方程聯(lián)立整理得,由三角形的面積公式求得,再根據(jù)基本不等式可得答案.【詳解】解:由拋物線C:得焦點(diǎn),又直線交C于A、B兩點(diǎn),所以直線的斜率不為0,則設(shè)直線的方程為,,聯(lián)立,整理得,則,又,,所以,又,當(dāng)且僅當(dāng),即時(shí)取等號(hào),所以的最小值為.故答案為:.15、4【解析】利用“1”的妙用,運(yùn)用基本不等式即可求解.【詳解】∵,即,∴又∵,,∴,當(dāng)且僅當(dāng)且,即,時(shí),等號(hào)成立,則的最小值為4.故答案為:.16、【解析】根據(jù)點(diǎn)到直線的距離公式得到,根據(jù),解不等式得到答案.【詳解】依題意有圓心到直線的距離,即,又無(wú)論取何值,,故,故.故答案:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2);(3)4.【解析】(1)根據(jù)圓圓心和半徑設(shè)圓的標(biāo)準(zhǔn)方程為,利用圓心到切線的距離等于圓的半徑即可求出a;(2)根據(jù)題意寫出AB的方程,根據(jù)垂徑定理即可求出弦長(zhǎng);(3)根據(jù)題意求出AB經(jīng)過(guò)的定點(diǎn)Q,當(dāng)CQ垂直于AB時(shí),AB最短.【小問(wèn)1詳解】由題,設(shè)圓C的標(biāo)準(zhǔn)方程為,則,解得.故圓C方程為;【小問(wèn)2詳解】根據(jù)題意可知,直線的方程為,即,圓心C到直線的距離為,故弦長(zhǎng);【小問(wèn)3詳解】設(shè),則,又直線方程為:,故直線過(guò)定點(diǎn)Q,設(shè)圓心C到直線距離為,則,故當(dāng)最大時(shí),最短,而,故與垂直時(shí)最大,此時(shí),,∴線段長(zhǎng)度的最小值4.18、(1)(2)【解析】(1)由向量的坐標(biāo)先求出,,,由向量的夾角公式可得答案.(2)由題意可得,從而求出參數(shù)的值【小問(wèn)1詳解】由題,,,故,,,所以故與夾角余弦值為.【小問(wèn)2詳解】由與的互相垂直知,,,即19、(1)證明見(jiàn)解析;(2).【解析】(1)設(shè)為中點(diǎn),連接,根據(jù),證明平面得到答案.(2)以為原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,計(jì)算各點(diǎn)坐標(biāo),計(jì)算平面和平面的法向量,根據(jù)向量夾角公式計(jì)算得到答案.【詳解】(1)設(shè)為中點(diǎn),連接,,∵,∴,又∵底面四邊形為菱形,,∴為等邊三角形,∴,又∴,,平面,∴平面,而平面,∴.(2)∵平面平面,平面平面,,∴平面以為原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,則,,,,,,由,,,即,∴,,,設(shè)為平面的法向量,則由,令,得,,∴,設(shè)為平面的法向量,則由,令,得,,∴,設(shè)二面角的平面角為,則,∴二面角的的余弦值為.【點(diǎn)睛】本題考查了線線垂直,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力,建立空間直角坐標(biāo)系是解題的關(guān)鍵.20、(1)(2)【解析】(1)由,根據(jù)正弦定理化簡(jiǎn)得,利用余弦定理求得,即可求解;(2)由的面積,求得,結(jié)合余弦定理,求得,即可求解.【小問(wèn)1詳解】解:因?yàn)椋?由正弦定理得,可得,所以,因?yàn)椋?【小問(wèn)2詳解】解:由的面積,所以.由余弦定理得,所以,所以,所以的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 競(jìng)爭(zhēng)對(duì)手情報(bào)和訴訟策略分析
- 結(jié)核病科護(hù)士的工作心得
- 大學(xué)教研成果推動(dòng)學(xué)科建設(shè)
- 兒童服裝銷售總結(jié)
- 寵物行業(yè)員工激勵(lì)方法總結(jié)
- 高一物理必修一的公式總結(jié)
- 鋼鐵行業(yè)專業(yè)英文詞匯
- 膜結(jié)構(gòu)工程施工方案
- 高寬比成倍增長(zhǎng)的方形框架
- 二零二五年度按揭購(gòu)房合同違約責(zé)任界定書(shū)3篇
- 基于Internet的銀行競(jìng)爭(zhēng)情報(bào)收集系統(tǒng)的研究與實(shí)現(xiàn)的中期報(bào)告
- 醫(yī)院對(duì)賬平臺(tái)技術(shù)方案
- 住院醫(yī)師規(guī)范化培訓(xùn)年度眼科學(xué)習(xí)總結(jié)
- 醫(yī)療事故處理?xiàng)l例【精美醫(yī)學(xué)課件】
- 2024年首都機(jī)場(chǎng)集團(tuán)公司招聘筆試參考題庫(kù)含答案解析
- 自動(dòng)化電氣控制方案
- 加油站涉恐風(fēng)險(xiǎn)評(píng)估報(bào)告
- 2 汽車維修檔案管理制度范文精簡(jiǎn)處理
- 工貿(mào)企業(yè)重大事故隱患判定標(biāo)準(zhǔn)培訓(xùn)PPT
- 2023年外交學(xué)院招考聘用筆試題庫(kù)含答案解析
- 農(nóng)學(xué)技能高考【種植類】復(fù)習(xí)題庫(kù)大全-2、《植物生產(chǎn)與環(huán)境》-上(單選多選題)
評(píng)論
0/150
提交評(píng)論