湖南省洞口二中2025屆高一上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第1頁
湖南省洞口二中2025屆高一上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第2頁
湖南省洞口二中2025屆高一上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第3頁
湖南省洞口二中2025屆高一上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第4頁
湖南省洞口二中2025屆高一上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖南省洞口二中2025屆高一上數(shù)學(xué)期末監(jiān)測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,,,則a,b,c三個數(shù)的大小關(guān)系是()A. B.C. D.2.直線(為實常數(shù))的傾斜角的大小是A B.C. D.3.當點在圓上變動時,它與定點的連線的中點的軌跡方程是()A. B.C. D.4.已知函數(shù)為定義在上的偶函數(shù),在上單調(diào)遞減,并且,則實數(shù)的取值范圍是()A. B.C. D.5.已知全集,集合,或,則()A. B.或C. D.6.若tanα=2,則的值為()A.0 B.C.1 D.7.已知平面直角坐標系中,的頂點坐標分別為、、,為所在平面內(nèi)的一點,且滿足,則點的坐標為()A. B.C. D.8.如果,那么()A. B.C. D.9.已知集合,或,則()A.或 B.C. D.或10.已知命題,則是()A., B.,C., D.,二、填空題:本大題共6小題,每小題5分,共30分。11.已知為的外心,,,,且;當時,______;當時,_______.12.已知冪函數(shù)圖像過點,則該冪函數(shù)的解析式是______________13.當,,滿足時,有恒成立,則實數(shù)的取值范圍為____________14.已知α為第二象限角,且則的值為______.15.據(jù)資料統(tǒng)計,通過環(huán)境整治.某湖泊污染區(qū)域的面積與時間t(年)之間存在近似的指數(shù)函數(shù)關(guān)系,若近兩年污染區(qū)域的面積由降至.則使污染區(qū)域的面積繼續(xù)降至還需要_______年16.設(shè),則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖所示,已知平面平面,平面平面,,求證:平面.18.已知向量,,設(shè)函數(shù)Ⅰ求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;Ⅱ求函數(shù)在區(qū)間的最大值和最小值19.已知向量,,函數(shù),且的圖像過點.(1)求的值;(2)將的圖像向左平移個單位后得到函數(shù)的圖像,若圖像上各點最高點到點的距離的最小值為1,求的單調(diào)遞增區(qū)間.20.如圖所示四棱錐中,底面,四邊形中,,,,求四棱錐的體積;求證:平面;在棱上是否存在點異于點,使得平面,若存在,求的值;若不存在,說明理由21.已知函數(shù),(其中,,)的圖象與軸的交點中,相鄰兩個交點之間的距離為,且圖象上一個最高點為.(1)求函數(shù)的解析式;(2)先把函數(shù)的圖象向左平移個單位長度,然后再把所得圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)的圖象,若總存在,使得不等式成立,求實數(shù)的最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】利用指數(shù)函數(shù)的單調(diào)性比較的大小,再用作中間量可比較出結(jié)果.【詳解】因為指數(shù)函數(shù)為遞減函數(shù),且,所以,所以,因為,,所以,綜上所述:.故選:A2、D【解析】計算出直線的斜率,再結(jié)合傾斜角的取值范圍可求得該直線的傾斜角.【詳解】設(shè)直線傾斜角為,直線的斜率為,所以,,則.故選:D.【點睛】本題考查直線傾斜角的計算,一般要求出直線的斜率,考查計算能力,屬于基礎(chǔ)題.3、D【解析】設(shè)中點的坐標為,則,利用在已知的圓上可得的中點的軌跡方程.【詳解】設(shè)中點的坐標為,則,因為點在圓上,故,整理得到.故選:D.【點睛】求動點的軌跡方程,一般有直接法和間接法,(1)直接法,就是設(shè)出動點的坐標,已知條件可用動點的坐標表示,化簡后可得動點的軌跡方程,化簡過程中注意變量的范圍要求.(2)間接法,有如下幾種方法:①幾何法:看動點是否滿足一些幾何性質(zhì),如圓錐曲線的定義等;②動點轉(zhuǎn)移:設(shè)出動點的坐標,其余的點可以前者來表示,代入后者所在的曲線方程即可得到欲求的動點軌跡方程;③參數(shù)法:動點的橫縱坐標都可以用某一個參數(shù)來表示,消去該參數(shù)即可動點的軌跡方程.4、D【解析】利用函數(shù)的奇偶性得到,再解不等式組即得解.【詳解】解:由題得.因為在上單調(diào)遞減,并且,所以,所以或.故選:D5、D【解析】根據(jù)交集和補集的定義即可得出答案.【詳解】解:因為,或,所以,所以.故選:D6、B【解析】將目標是分子分母同時除以,結(jié)合正切值,即可求得結(jié)果.【詳解】==.故選:【點睛】本題考查齊次式的化簡和求值,屬基礎(chǔ)題.7、A【解析】設(shè)點的坐標為,根據(jù)向量的坐標運算得出關(guān)于、的方程組,解出這兩個未知數(shù),可得出點的坐標.【詳解】設(shè)點的坐標為,,,,,即,解得,因此,點的坐標為.故選:A.【點睛】本題考查向量的坐標運算,考查計算能力,屬于基礎(chǔ)題.8、D【解析】利用對數(shù)函數(shù)的單調(diào)性,即可容易求得結(jié)果.【詳解】因為是單調(diào)減函數(shù),故等價于故選:D【點睛】本題考查利用對數(shù)函數(shù)的單調(diào)性解不等式,屬基礎(chǔ)題.9、A【解析】應(yīng)用集合的并運算求即可.【詳解】由題設(shè),或或.故選:A10、C【解析】由全稱命題的否定是特稱命題即可得結(jié)果.【詳解】由全稱命題的否定是特稱命題知:,,是,,故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、(1).(2).【解析】(1)由可得出為的中點,可知為外接圓的直徑,利用銳角三角函數(shù)的定義可求出;(2)推導(dǎo)出外心的數(shù)量積性質(zhì),,由題意得出關(guān)于、和的方程組,求出的值,再利用向量夾角的余弦公式可求出的值.【詳解】當時,由可得,,所以,為外接圓的直徑,則,此時;如下圖所示:取的中點,連接,則,所,,同理可得.所以,,整理得,解得,,,因此,.故答案為:;.【點睛】本題考查三角的外心的向量數(shù)量積性質(zhì)的應(yīng)用,解題的關(guān)鍵就是推導(dǎo)出,,并以此建立方程組求解,計算量大,屬于難題.12、【解析】設(shè)出冪函數(shù)的函數(shù)表達,然后代點計算即可.【詳解】設(shè),因為,所以,所以函數(shù)的解析式是故答案為:.13、【解析】根據(jù)基本不等式求得的最小值,由此建立不等式,求解即可.【詳解】解:,,則,∴,當且僅當,即:時取等號,∴,∴,∴實數(shù)的取值范圍為故答案為:.14、【解析】根據(jù)已知求解得出,再利用誘導(dǎo)公式和商數(shù)關(guān)系化簡可求【詳解】由,得,得或.α為第二象限角,,.故答案:.15、2【解析】根據(jù)已知條件,利用近兩年污染區(qū)域的面積由降至,求出指數(shù)函數(shù)關(guān)系的底數(shù),再代入求得污染區(qū)域?qū)⒅吝€需要的年數(shù).【詳解】設(shè)相隔為t年的兩個年份湖泊污染區(qū)域的面積為和,則可設(shè)由題設(shè)知,,,,即,解得,假設(shè)需要x年能將至,即,,,解得所以使污染區(qū)域的面積繼續(xù)降至還需要2年.故答案為:216、1【解析】根據(jù)指數(shù)式與對數(shù)式的互化,得到,,再結(jié)合對數(shù)的運算法則,即可求解.【詳解】由,可得,,所以.故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、見解析【解析】平面內(nèi)取一點,作于點,于點,可證出平面,從而,同理可證,故平面.【詳解】證明:如圖所示,在平面內(nèi)取一點,作于點,于點.因為平面平面,且交線為,所以平面.因為平面,所以同理可證.又,都在平面內(nèi),且,所以平面【點睛】本題主要考查了兩個平面垂直的性質(zhì),線面垂直的性質(zhì),判定,屬于中檔題.18、(Ⅰ)最小正周期是,增區(qū)間為,;(Ⅱ)最大值為5,最小值為4【解析】Ⅰ根據(jù)向量數(shù)量積,利用二倍角的正弦公式、二倍角的余弦公式以及兩角和與差的正弦公式將函數(shù)化為,利用正弦函數(shù)的周期公式可得函數(shù)的周期,利用正弦函數(shù)的單調(diào)性解不等式,可得到函數(shù)的遞增區(qū)間;Ⅱ根據(jù)的范圍得的范圍,結(jié)合正弦函數(shù)的單調(diào)性可得的最大最小值【詳解】Ⅰ,,,,由,得,所以的增區(qū)間為,;Ⅱ,,可得,的最大值為5,最小值為4【點睛】以三角形和平面向量為載體,三角恒等變換為手段,三角函數(shù)的圖象與性質(zhì)為工具,對三角函數(shù)及解三角形進行考查是近幾年高考考查的一類熱點問題,一般難度不大,但綜合性較強.解答這類問題,兩角和與差的正余弦公式、誘導(dǎo)公式以及二倍角公式,一定要熟練掌握并靈活應(yīng)用,特別是二倍角公式的各種變化形式要熟記于心.19、(1);(2).【解析】(1)利用兩個向量的數(shù)量積公式,兩角和的正弦公式化簡函數(shù)的解析式,再把點代入,求得的值(2)根據(jù)函數(shù)的圖象變換規(guī)律求得的解析式,再利用正弦函數(shù)的單調(diào)性,求得的單調(diào)遞增區(qū)間【詳解】(1)已知,過點解得:;(2)左移后得到設(shè)的圖象上符合題意的最高點為,解得,解得,,,的單調(diào)增區(qū)間為.【點睛】本題主要考查了三角函數(shù)與向量的簡單運算知識點,以及函數(shù)的圖象變換,屬于中檔題.20、(1)4;(2)見解析;(3)不存在.【解析】利用四邊形是直角梯形,求出,結(jié)合底面,利用棱錐的體積公式求解即可求;先證明,,結(jié)合,利用線面垂直的判定定理可得平面;用反證法證明,假設(shè)存在點異于點使得平面證明平面平面,與平面與平面相交相矛盾,從而可得結(jié)論【詳解】顯然四邊形ABCD是直角梯形,又底面平面ABCD,平面ABCD,在直角梯形ABCD中,,,,即又,平面;不存在,下面用反證法進行證明假設(shè)存在點異于點使得平面PAD,且平面PAD,平面PAD,平面PAD又,平面平面PAD而平面PBC與平面PAD相交,得出矛盾【點睛】本題考查直線與平面垂直的判定,棱錐的體積,平面與平面平行的判定定理,考查空間想象能力,邏輯推理能力.證明直線和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推論;(3)利用面面平行的性質(zhì);(4)利用面面垂直的性質(zhì),當兩個平面垂直時,在一個平面內(nèi)垂直于交線的直線垂直于另一個平面.21、(1);(2).【解析】(1)根據(jù)相鄰

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論