山東省日照農業(yè)學校2025屆高二上數(shù)學期末質量檢測模擬試題含解析_第1頁
山東省日照農業(yè)學校2025屆高二上數(shù)學期末質量檢測模擬試題含解析_第2頁
山東省日照農業(yè)學校2025屆高二上數(shù)學期末質量檢測模擬試題含解析_第3頁
山東省日照農業(yè)學校2025屆高二上數(shù)學期末質量檢測模擬試題含解析_第4頁
山東省日照農業(yè)學校2025屆高二上數(shù)學期末質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省日照農業(yè)學校2025屆高二上數(shù)學期末質量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知兩個向量,,且,則的值為()A.1 B.2C.4 D.82.直線在軸上的截距為()A.3 B.C. D.3.有6個相同的球,分別標有數(shù)字1,2,3,4,5,6,從中有放回的隨機取兩次,每次取1個球.甲表示事件“第一次取出的球的數(shù)字是1”,乙表示事件“第二次取出的球的數(shù)字是6”,丙表示事件“兩次取出的球的數(shù)字之和是5”,丁表示事件“兩次取出的球的數(shù)字之和是偶數(shù)”,則下列判斷正確的是()A.甲與丙是互斥事件 B.乙與丙是對立事件C.甲與丁是對立事件 D.丙與丁是互斥事件4.過點且斜率為的直線方程為()A. B.C. D.5.已知不等式只有一個整數(shù)解,則m的取值范圍是()A. B.C. D.6.設函數(shù)在R上可導,則()A. B.C. D.以上都不對7.如圖,平行六面體中,與的交點為,設,則選項中與向量相等的是()A. B.C. D.8.在中,B=60°,,,則AC邊的長等于()A. B.C. D.9.下列說法正確的是()A.空間中的任意三點可以確定一個平面B.四邊相等的四邊形一定是菱形C.兩條相交直線可以確定一個平面D.正四棱柱的側面都是正方形10.橢圓與(0<k<9)的()A.長軸的長相等B.短軸的長相等C.離心率相等D.焦距相等11.設,則有()A. B.C. D.12.如圖是一水平放置的青花瓷.它的外形為單葉雙曲面,可看成是雙曲線的一部分繞其虛軸旋轉所形成的曲面,且其外形上下對稱.花瓶的最小直徑為,瓶口直徑為,瓶高為,則該雙曲線的虛軸長為()A. B.C. D.45二、填空題:本題共4小題,每小題5分,共20分。13.如圖,AD與BC是三棱錐中互相垂直的棱,,(c為常數(shù)).若,則實數(shù)的取值范圍為__________.14.如圖,在平行六面體中,底面是邊長為1的正方形,的長度為2,且,則的長度為________15.已知直線和直線垂直,則實數(shù)___________.16.如圖,橢圓的左、右焦點分別為,過橢圓上的點作軸的垂線,垂足為,若四邊形為菱形,則該橢圓的離心率為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在①,②,③,這三個條件中任選一個,補充在下面的問題中,并解答問題在中,內角A,,的對邊分別為,,,且滿足______________(1)求;(2)若的面積為,在邊上,且,求的最小值注:如果選擇多個條件分別解答,按第一個解答計分18.(12分)如圖,漁船甲位于島嶼A的南偏西60°方向的B處,且與島嶼A相距12海里,漁船乙以10海里/小時的速度從島嶼A出發(fā)沿正北方向航行,若漁船甲同時從B處出發(fā)沿北偏東α的方向追趕漁船乙,剛好用2小時追上.(1)求漁船甲的速度;(2)求的值.19.(12分)若數(shù)列的前n項和滿足,(1)求的通項公式;(2)設,求數(shù)列的前n項和20.(12分)若存在實常數(shù)k和b,使得函數(shù)和對其公共定義域上的任意實數(shù)x都滿足:和恒成立,則稱此直線y=kx+b為和的“隔離直線”.已知函數(shù),.(1)證明函數(shù)在內單調遞增;(2)證明和之間存在“隔離直線”,且b的最小值為-4.21.(12分)已知(1)求的最小正周期及單調遞增區(qū)間;(2)已知鈍角內角A,B,C的對邊長分別a,b,c,若,,.求a的值22.(10分)已知函數(shù).(1)若,求的極值;(2)若有兩個零點,求實數(shù)a取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由,可知,使,利用向量的數(shù)乘運算及向量相等即可得解.【詳解】∵,∴,使,得,解得:,所以故選:C【點睛】思路點睛:在解決有關平行的問題時,通常需要引入?yún)?shù),如本題中已知,引入?yún)?shù),使,轉化為方程組求解;本題也可以利用坐標成比例求解,即由,得,求出m,n.2、A【解析】把直線方程由一般式化成斜截式,即可得到直線在軸上的截距.【詳解】由,可得,則直線在軸上的截距為3.故選:A3、D【解析】根據(jù)互斥事件和對立事件的定義判斷【詳解】當?shù)谝淮稳〕?,第二次取出4時,甲丙同時發(fā)生,不互斥不對立;第二次取出的球的數(shù)字是6與兩次取出的球的數(shù)字之和是5不可能同時發(fā)生,但可以同時不發(fā)生,不對立,當?shù)谝淮稳〕?,第二次取出3時,甲與丁同時發(fā)生,不互斥不對立,兩次取出的球的數(shù)字之和是5與兩次取出的球的數(shù)字之和是偶數(shù)不可以同時發(fā)生,但可以同時不發(fā)生,因此是互斥不對立故選:D4、B【解析】利用點斜式可得出所求直線的方程.【詳解】由題意可知所求直線的方程為,即.故選:B.5、B【解析】依據(jù)導函數(shù)得到函數(shù)的單調性,數(shù)形結合去求解即可解決.【詳解】不等式只有一個整數(shù)解,可化為只有一個整數(shù)解令,則當時,,單調遞增;當時,,單調遞減,則當時,取最大值,當時,恒成立,的草圖如下:,,則若只有一個整數(shù)解,則,即故不等式只有一個整數(shù)解,則m的取值范圍是故選:B6、B【解析】根據(jù)極限的定義計算【詳解】由題意故選:B7、B【解析】利用空間向量加減法、數(shù)乘的幾何意義,結合幾何體有,進而可知與向量相等的表達式.【詳解】連接,如下圖示:,.故選:B8、B【解析】根據(jù)正弦定理直接計算可得答案.【詳解】由正弦定理,,得,故選:B.9、C【解析】根據(jù)立體幾何相關知識對各選項進行判斷即可.【詳解】對于A,根據(jù)公理2及推論可知,不共線的三點確定一個平面,故A錯誤;對于B,在一個平面內,四邊相等的四邊形才一定是菱形,故B錯誤;對于C,根據(jù)公理2及推論可知,兩條相交直線可以確定一個平面,故C正確;對于D,正四棱柱指上、下底面都是正方形且側棱垂直于底面的棱柱,側面可以是矩形,故D錯誤.故選:C10、D【解析】根據(jù)橢圓方程求得兩個橢圓的,由此確定正確選項.【詳解】橢圓與(0<k<9)的焦點分別在x軸和y軸上,前者a2=25,b2=9,則c2=16,后者a2=25-k,b2=9-k,則顯然只有D正確故選:D11、A【解析】利用作差法計算與比較大小即可求解.【詳解】因為,,所以,所以,故選:A.12、C【解析】設雙曲線方程為,,由已知可得,并求得雙曲線上一點的坐標,把點的坐標代入雙曲線方程,求解,即可得到雙曲線的虛軸長【詳解】設點是雙曲線與截面的一個交點,設雙曲線的方程為:,花瓶的最小直徑,則,由瓶口直徑為,瓶高為,可得,故,解得,該雙曲線的虛軸長為故選:二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分析得都在以為焦點的橢球上,再利用橢球的性質得到,化簡即得解.【詳解】解:因為,所以都在以為焦點橢球上,由橢球的性質得,是垂直橢球焦點所在直線的弦,的最大值為,此時共面且過中點,即故實數(shù)的取值范圍為.故答案為:14、【解析】設一組基地向量,將目標用基地向量表示,然后根據(jù)向量的運算法則運算即可【詳解】設,則有:則有:根據(jù),解得:故答案為:15、【解析】根據(jù)兩條直線相互垂直的條件列方程,解方程求得m的值.【詳解】由于兩條直線垂直,故,解得.故答案為:.16、【解析】根據(jù)題意可得,利用推出,進而得出結果.【詳解】由題意知,,將代入方程中,得,因為,所以,整理,得,又,所以,由,解得.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、選擇見解析;(1);(2)【解析】(1)選條件①.利用正弦定理邊角互化,結合兩角和的正弦公式可得,從而可得答案;選條件②.邊角互化、切化弦,結合兩角和的正弦公式可得,從而得答案;選條件③.邊角互化,利用余弦定理可得,從而可得答案;(2)由三角形面積公式可得得,再利用余弦定理與基本不等式可得答案.【詳解】(1)方案一:選條件①由可得,由正弦定理得,因為,所以,所以,故,又,于是,即,因為,所以方案二:選條件②因為,所以由正弦定理及同角三角函數(shù)的基本關系式,得,即,因為,所以,又,所以,因為,所以方案三:選條件③∵,∴,即,∴,∴又,所以(2)由題意知,得由余弦定理得,當且僅當且,即,時取等號,所以的最小值為18、(1)14海里小時;(2).【解析】(1)由題意知,,,.在△中,利用余弦定理求出,進而求出漁船甲的速度.(2)在△中,,,,,由正弦定理,即可解出的值.【小問1詳解】(1)依題意,,,,.在△中,由余弦定理,得.解得.故漁船甲的速度為海里小時.即漁船甲的速度為14海里小時.【小問2詳解】在△中,因為,,,,由正弦定理,得,即.值為.19、(1)(2)【解析】(1)根據(jù)遞推關系結合等比數(shù)列的定義可求解;(2)根據(jù)(1)化簡,利用裂項相消法求出數(shù)列的前n項和.小問1詳解】當時,,所以,即,當時,,得,則所以數(shù)列是首項為﹣1,公比為3的等比數(shù)列所以【小問2詳解】由(1)得:所以,所以20、(1)見解析(2)見解析【解析】(1)由導數(shù)得出在上的單調性;(2)設和之間的隔離直線為y=kx+b,由題設條件得出對任意恒成立,再由二次函數(shù)的性質求解即可.【小問1詳解】,當時,在上單調遞增在內單調遞增【小問2詳解】設和之間的隔離直線為y=kx+b則對任意恒成立,即對任意恒成立由對任意恒成立,得當時,則有符合題意;當時,則有對任意恒成立的對稱軸為又的對稱軸為即故和之間存在“隔離直線”,且b的最小值為-4.【點睛】關鍵點睛:在解決問題一時,求了一階導得不了函數(shù)的單調性,再次求導得,進而得出在恒成立,得在上的單調性.21、(1),;(2)2.【解析】(1)利用三角恒等變換公式化簡函數(shù),再利用三角函數(shù)性質計算作答.(2)由(1)的結論及已知求出角C,再利用余弦定理計算判斷作答.【小問1詳解】依題意,,則的最小正周期,由,解得,則在上單調遞增,所以的最小正周期為,遞增區(qū)間為.【小問2詳解】由(1)知,,即,在中,,,則,即,,于是得,解得,在中,由余弦定理得:,即,解得或,當時,,為直角三角形,與是鈍角三角形矛盾,當時,,,此時,是鈍角三角形,則,所以a的值是2.22、(1)極小值為,無極大值(2)【解析】(1)利用導數(shù)求出,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論