2025屆山西省靜樂縣第一中學數學高二上期末考試試題含解析_第1頁
2025屆山西省靜樂縣第一中學數學高二上期末考試試題含解析_第2頁
2025屆山西省靜樂縣第一中學數學高二上期末考試試題含解析_第3頁
2025屆山西省靜樂縣第一中學數學高二上期末考試試題含解析_第4頁
2025屆山西省靜樂縣第一中學數學高二上期末考試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆山西省靜樂縣第一中學數學高二上期末考試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知離散型隨機變量X的分布列如下:X123P則數學期望()A. B.C.1 D.22.拋物線焦點坐標為()A. B.C. D.3.用數學歸納法時,從“k到”左邊需增乘的代數式是()A. B.C. D.4.設為數列的前n項和,,且滿足,若,則()A.2 B.3C.4 D.55.我國古代數學著作《算法統宗》中有這樣一段記載:“一百八十九里關,初行健步不為難,次日腳痛減一半,六朝才得到其關.”其大意為:“有一個人共行走了189里的路程,第一天健步行走,從第二天起,因腳痛每天走的路程為前一天的一半,走了6天才到達目的地.”則該人第一天行走的路程為()A.108里 B.96里C.64里 D.48里6.雙曲線與橢圓的焦點相同,則等于()A.1 B.C.1或 D.27.我國古代數學論著中有如下敘述:“遠望巍巍塔七層,紅光點點倍加增,共燈二百五十四.”思如下:一座7層塔共掛了254盞燈,且相鄰兩層下一層所掛燈數是上一層所掛燈數的2倍.下列結論不正確的是()A.底層塔共掛了128盞燈B.頂層塔共掛了2盞燈C.最下面3層塔所掛燈的總盞數比最上面3層塔所掛燈的總盞數多200D.最下面3層塔所掛燈的總盞數是最上面3層塔所掛燈的總盞數的16倍8.設為數列的前n項和,且,則=()A.26 B.19C.11 D.99.已知橢圓的焦點分別為,,橢圓上一點P與焦點的距離等于6,則的面積為()A.24 B.36C.48 D.6010.甲、乙、丙、丁、戊共5名同學進行勞動技術比賽,決出第1名到第5名的名次.甲和乙去詢問成績,回答者對甲說:“很遺憾,你和乙都沒有得到冠軍.”對乙說:“你當然不會是最差的.”從這兩個回答分析,5人的名次排列方式共有()種A.54 B.72C.96 D.12011.下列關系中,正確的是()A. B.C. D.12.《九章算術》是中國古代張蒼、耿壽昌所撰寫的一部數學專著,全書總結了戰(zhàn)國、秦、漢時期的數學成就,其中有如下問題:“今有五人分五錢,令上二人所得與下三人等,問各得幾何?”其意思為:“今有人分錢,各人所得錢數依次為等差數列,其中前人所得之和與后人所得之和相等,問各得多少錢?”,則第人得錢數為()A.錢 B.錢C.錢 D.錢二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在平行六面體中,底面是邊長為1的正方形,的長度為2,且,則的長度為________14.已知遞增數列共有2021項,且各項均不為零,,如果從中任取兩項,當時,仍是數列中的項,則的范圍是________________,數列的所有項和________15.在等差數列中,,那么等于______.16.已知△ABC的周長為20,且頂點,則頂點A的軌跡方程是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)若函數在區(qū)間上的最大值為9,最小值為1.(1)求a,b的值;(2)若方程在上有兩個不同的解,求實數k的取值范圍.18.(12分)已知直線和,設a為實數,分別根據下列條件求a的值:(1)(2)19.(12分)要設計一種圓柱形、容積為500mL的一體化易拉罐金屬包裝,如何設計才能使得總成本最低?20.(12分)已知等比數列的前項和為,且,.(1)求的通項公式;(2)求.21.(12分)如圖所示,在四棱錐中,平面,底面是等腰梯形,.且(1)證明:平面平面;(2)若,求平面與平面的夾角的余弦值22.(10分)已知圓:,,為圓上的動點,若線段的垂直平分線交于點.(1)求動點的軌跡的方程;(2)已知為上一點,過作斜率互為相反數且不為0的兩條直線,分別交曲線于,,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用已知條件,結合期望公式求解即可【詳解】解:由題意可知:故選:D2、C【解析】由拋物線方程確定焦點位置,確定焦參數,得焦點坐標【詳解】拋物線的焦點在軸正半軸,,,,因此焦點坐標為故選:C3、C【解析】分別求出n=k時左端的表達式,和n=k+1時左端的表達式,比較可得“n從k到k+1”左端需增乘的代數式【詳解】當n=k時,左端=(k+1)(k+2)(k+3)…(2k),當n=k+1時,左端=(k+2)(k+3)…(2k)(2k+1)(2k+2),∴左邊需增乘的代數式是故選:C【點睛】本題考查用數學歸納法證明等式,分別求出n=k時左端的表達式和n=k+1時左端的表達式,是解題的關鍵4、B【解析】由已知條件可得數列為首項為2,公差為2的等差數列,然后根據結合等差數列的求和公式可求得答案【詳解】在等式中,令,可得,所以數列為首項為2,公差為2的等差數列,因為,所以,化簡得,,解得或(舍去),故選:B5、B【解析】根據題意,記該人每天走的路程里數為,分析可得每天走的路程里數構成以的為公比的等比數列,由求得首項即可【詳解】解:根據題意,記該人每天走的路程里數為,則數列是以的為公比的等比數列,又由這個人走了6天后到達目的地,即,則有,解可得:,故選:B.【點睛】本題考查數列的應用,涉及等比數列的通項公式以及前項和公式的運用,注意等比數列的性質的合理運用.6、A【解析】根據雙曲線方程形式確定焦點位置,再根據半焦距關系列式求參數.【詳解】因為雙曲線的焦點在軸上,所以橢圓焦點在軸上,依題意得解得.故選:A7、C【解析】由題設易知是公比為2的等比數列,應用等比數列前n項和公式求,結合各選項的描述及等比數列通項公式、前n項和公式判斷正誤即可.【詳解】從上往下記每層塔所掛燈的盞數為,則數列是公比為2的等比數列,且,解得,所以頂層塔共掛了2盞燈,B正確;底層塔共掛了盞燈,A正確最上面3層塔所掛燈總盞數為14,最下面3層塔所掛燈的總盞數為224,C不正確,D正確故選:C.8、D【解析】先求得,然后求得.【詳解】依題意,當時,,當時,,,所以,所以.故選:D9、A【解析】由題意可得出與、、的值,在根據橢圓定義得的值,即可得到是直角三角形,即可求出的面積.【詳解】由題意知,.根據橢圓定義可知,是直角三角形,.故選:A.10、A【解析】根據題意,分2種情況討論:①、甲是最后一名,則乙可以為第二、三、四名,剩下的三人安排在其他三個名次,②、甲不是最后一名,甲乙需要排在第二、三、四名,剩下的三人安排在其他三個名次,由加法原理計算可得答案【詳解】根據題意,甲乙都沒有得到冠軍,而乙不是最后一名,分2種情況討論:①甲是最后一名,則乙可以為第二、三、四名,即乙有3種情況,剩下的三人安排在其他三個名次,有種情況,此時有種名次排列情況;②甲不是最后一名,甲乙需要排在第二、三、四名,有種情況,剩下的三人安排在其他三個名次,有種情況,此時有種名次排列情況;則一共有種不同的名次情況,故選:A11、B【解析】根據對數函數的性質判斷A,根據指數函數的性質判斷B,根據正弦函數的性質及誘導公式判斷C,根據余弦函數的性質及誘導公式判斷D;【詳解】解:對于A:因為,,,故A錯誤;對于B:因為在定義域上單調遞減,因為,所以,又,,因為在上單調遞增,所以,所以,所以,故B正確;對于C:因為在上單調遞減,因為,所以,又,所以,故C錯誤;對于D:因為在上單調遞減,又,所以,又,所以,故D錯誤;故選:B12、A【解析】設第所得錢數為錢,設數列、、、、的公差為,根據已知條件可得出關于、的值,即可求得的值.【詳解】設第所得錢數為錢,則數列、、、、為等差數列,設數列、、、、公差為,則,解得,故.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設一組基地向量,將目標用基地向量表示,然后根據向量的運算法則運算即可【詳解】設,則有:則有:根據,解得:故答案為:14、①.②.1011【解析】根據題意得到,得到,,,,進而得到,從而即可求得的值.【詳解】由題意,遞增數列共有項,各項均不為零,且,所以,所以的范圍是,因為時,仍是數列中的項,即,且上述的每一項均在數列中,所以,,,,即,所以,所以.故答案為:;.15、14【解析】根據等差數列的性質得到,求得,再由,即可求解.【詳解】因為數列為等差數列,且,根據等差數列的性質,可得,解答,又由.故答案為:14.16、.【解析】由周長確定,故軌跡是橢圓,注意焦點位置和摳除不符合條件的點即可.【詳解】解:,所以,,則頂點A的軌跡方程是.故答案為:.【點睛】考查橢圓定義的應用,基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)令,則,根據二次函數的性質即可求出;(2)令,方程化為,求出的變化情況即可求出.【小問1詳解】令,則,則題目等價于在的最大值為9,最小值為1,對稱軸,開口向上,則,解得;【小問2詳解】令,則,于是方程可變?yōu)?,即,因為函數在單調遞減,在單調遞增,且,要使方程有兩個不同的解,則與有兩個不同的交點,所以.18、(1)a=4或a=-2(2)a=【解析】(1)根據,由a(a-2)-2×4=0求解;(2)根據,由4a=-2(a-2)求解.【小問1詳解】解:因為,所以a(a-2)-2×4=0,解得a=4或a=-2所以當時,a=4或a=-2;【小問2詳解】因為,所以4a=-2(a-2),解得a=檢驗:此時,,成立所以當時,a=.19、當圓柱底面半徑為,高為時,總成本最底.【解析】設圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,進而根據體積得到,然后求出表面積,進而運用導數的方法求得表面積的最小值,此時成本最小.【詳解】設圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,每平方厘米金屬包裝造價為元,由題意得:,則,表面積造價,,令,得,令,得,的單調遞減區(qū)間為,遞增區(qū)間為,當圓柱底面半徑為,高為時,總成本最底.20、(1)(2)【解析】(1)設的公比為,根據題意求得的值,即可求得的通項公式;(2)由(1)求得,得到,利用等比數列的求和公式,即可求解.【小問1詳解】解:設的公比為,因為,,則,又因為,解得,所以的通項公式為.【小問2詳解】解:由,可得,則,所以.21、(1)證明見解析(2)【解析】(1)由線面垂直的判定定理可得平面,再由面面垂直的判定定理可得平面平面;(2)以為坐標原點,以,所在直線分別為,軸,以過點垂直于平面的直線為軸建立空間直角坐標系.求出平面的一個法向量、平面的法向量,由二面角的空間向量求法可得答案.【小問1詳解】因為四邊形是等腰梯形,,所以,所以,即因為平面,所以,又因為,所以平面,因為平面,所以平面平面【小問2詳解】以為坐標原點,以,所在直線分別為,軸,以過點垂直于平面的直線為軸建立如圖所示的空間直角坐標系設,則,所以,,,由(1)可知平面的一個法向量為設平面的法向量為,因為,,所以得令,則,,所以,則,所以平面與平面的夾

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論