四川省廣安市武勝烈面中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
四川省廣安市武勝烈面中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
四川省廣安市武勝烈面中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
四川省廣安市武勝烈面中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
四川省廣安市武勝烈面中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

四川省廣安市武勝烈面中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若數(shù)列滿足,則()A.2 B.6C.12 D.202.已知空間向量,,,若,,共面,則m+2t=()A.-1 B.0C.1 D.-63.當(dāng)我們停放自行車時,只要將自行車旁的撐腳放下,自行車就穩(wěn)了,這用到了()A.三點確定一平面 B.不共線三點確定一平面C.兩條相交直線確定一平面 D.兩條平行直線確定一平面4.圓與圓的位置關(guān)系是()A.內(nèi)含 B.相交C.外切 D.外離5.若函數(shù)f(x)=x2+x+1在區(qū)間內(nèi)有極值點,則實數(shù)a的取值范圍是()A. B.C. D.6.如圖,在長方體中,若,,則異面直線和所成角的余弦值為()A. B.C. D.7.如果,,那么直線不經(jīng)過的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限8.如圖所示,某空間幾何體的三視圖是3個全等的等腰直角三角形,且直角邊長為2,則該空間幾何體的體積為()A. B.C. D.9.已知函數(shù)(為自然對數(shù)的底數(shù)),若的零點為,極值點為,則()A. B.0C.1 D.210.一組“城市平安建設(shè)”的滿意度測評結(jié)果,,…,的平均數(shù)為116分,則,,…,,116的()A.平均數(shù)變小 B.平均數(shù)不變C.標(biāo)準(zhǔn)差不變 D.標(biāo)準(zhǔn)差變大11.《米老鼠和唐老鴨》這部動畫給我們的童年帶來了許多美好的回憶,令我們印象深刻.如圖所示,有人用3個圓構(gòu)成米奇的簡筆畫形象.已知3個圓方程分別為:圓圓,圓若過原點的直線與圓、均相切,則截圓所得的弦長為()A. B.C. D.12.設(shè)函數(shù)在定義域內(nèi)可導(dǎo),的圖象如圖所示,則導(dǎo)函數(shù)的圖象可能為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓交軸于A,兩點,點是橢圓上異于A,的任意一點,直線,分別交軸于點,,則為定值.現(xiàn)將雙曲線與橢圓類比得到一個真命題:若雙曲線交軸于A,兩點,點是雙曲線上異于A,的任意一點,直線,分別交軸于點,,則為定值___14.不等式的解集為,則________15.圍棋是一種策略性兩人棋類游戲.已知某圍棋盒子中有若干粒黑子和白子,從盒子中取出2粒棋子,2粒都是黑子的概率為,2粒恰好是同一色的概率比不同色的概率大,則2粒恰好都是白子的概率是______16.若兩條直線與互相垂直,則a的值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)甲、乙兩人參加普法知識競賽,共有5題,選擇題(1)甲、乙兩人中有一個抽到選擇題(2)甲、乙兩人中至少有一人抽到選擇題18.(12分)某中醫(yī)藥研究所研制出一種新型抗過敏藥物,服用后需要檢驗血液抗體是否為陽性,現(xiàn)有n(n∈N*)份血液樣本,每個樣本取到的可能性均等,有以下兩種檢驗方式:①逐份檢驗,需要檢驗n次;②混合檢驗,將其中k(k∈N*,2≤k≤n)份血液樣本分別取樣混合在一起檢驗,若結(jié)果為陰性,則這k份的血液全為陰性,因而這k份血液樣本只需檢驗一次就夠了,若檢驗結(jié)果為陽性,為了明確這k份血液究竟哪份為陽性,就需要對這k份再逐份檢驗,此時這k份血液的檢驗次數(shù)總共為k+1次.假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是相互獨立的,且每份樣本是陽性的概率為p(0<p<1).(1)假設(shè)有5份血液樣本,其中只有兩份樣本為陽性,若采取逐份檢驗的方式,求恰好經(jīng)過3次檢驗就能把陽性樣本全部檢驗出來的概率.(2)現(xiàn)取其中的k(k∈N*,2≤k≤n)份血液樣本,采用逐份檢驗的方式,樣本需要檢驗的次數(shù)記為ξ1;采用混合檢驗的方式,樣本需要檢驗的總次數(shù)記為ξ2.(i)若k=4,且,試運(yùn)用概率與統(tǒng)計的知識,求p的值;(ii)若,證明:.19.(12分)已知函數(shù).(1)當(dāng)時,求的單調(diào)區(qū)間與極值;(2)若在上有解,求實數(shù)a的取值范圍.20.(12分)已知橢圓C:的長軸長為,P是橢圓上異于頂點的一個動點,O為坐標(biāo)原點,A為橢圓C的上頂點,Q為PA的中點,且直線PA與直線OQ的斜率之積恒為-2.(1)求橢圓C的方程;(2)若斜率為k且過上焦點F的直線l與橢圓C相交于M,N兩點,當(dāng)點M,N到y(tǒng)軸距離之和最大時,求直線l的方程.21.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,側(cè)棱底面ABCD,,,E為PB中點,F(xiàn)為PC上一點,且(1)求證:;(2)求平面DEF與平面ABCD所成銳二面角的余弦值22.(10分)已知圓心在直線上,且過點、(1)求的標(biāo)準(zhǔn)方程;(2)已知過點的直線被所截得的弦長為4,求直線的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由已知條件變形可得,然后累乘法可得,即可求出詳解】由得,,.故選:D2、D【解析】根據(jù)向量共面列方程,化簡求得.【詳解】,所以不共線,由于,,共面,所以存在,使,即,,,,,即.故選:D3、B【解析】自行車前后輪與撐腳分別接觸地面,使得自行車穩(wěn)定,此時自行車與地面的三個接觸點不在同一條線上.【詳解】自行車前后輪與撐腳分別接觸地面,此時三個接觸點不在同一條線上,所以可以確定一個平面,即地面,從而使得自行車穩(wěn)定.故選B項.【點睛】本題考查不共線的三個點確定一個平面,屬于簡單題.4、C【解析】分別求出兩圓的圓心、半徑,再求出兩圓的圓心距即可判斷作答.【詳解】圓的圓心,半徑,圓,即的圓心,半徑,則,即有,所以圓與圓外切.故選:C5、C【解析】若f(x)=x2+x+1在區(qū)間內(nèi)有極值點,則f'(x)=x2-ax+1在區(qū)間內(nèi)有零點,且零點不是f'(x)的圖象頂點的橫坐標(biāo).由x2-ax+1=0,得a=x+.因為x∈,y=x+的值域是,當(dāng)a=2時,f'(x)=x2-2x+1=(x-1)2,不合題意.所以實數(shù)a的取值范圍是,故選C.6、D【解析】根據(jù)長方體中,異面直線和所成角即為直線和所成角,再結(jié)合余弦定理即可求解.【詳解】解:連接、,如下圖所示由圖可知,在長方體中,且,所以,所以異面直線和所成角即為,又,,由余弦定理可得∶故選:D.7、A【解析】將直線化為,結(jié)合已知條件即可判斷不經(jīng)過的象限.【詳解】由題設(shè),直線可寫成,又,,∴,,故直線過二、三、四象限,不過第一象限.故選:A.8、A【解析】在該空間幾何體的直觀圖中去求其體積即可.【詳解】依托棱長為2的正方體得到該空間幾何體的直觀圖為三棱錐則故選:A9、C【解析】令可求得其零點,即的值,再利用導(dǎo)數(shù)可求得其極值點,即的值,從而可得答案【詳解】解:,當(dāng)時,,即,解得;當(dāng)時,恒成立,的零點為又當(dāng)時,為增函數(shù),故在,上無極值點;當(dāng)時,,,當(dāng)時,,當(dāng)時,,時,取到極小值,即的極值點,故選:C【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查函數(shù)的零點,考查分段函數(shù)的應(yīng)用,突出分析運(yùn)算能力的考查,屬于中檔題10、B【解析】利用平均數(shù)、方差的定義和性質(zhì)直接求出,,…,,116的平均數(shù)、方差從而可得答案.【詳解】,,…,的平均數(shù)為116分,則,,…,,116的平均數(shù)為設(shè),,…,的方差為則所以則,,…,,116的方差為所以,,…,,116的平均數(shù)不變,方差變小.標(biāo)準(zhǔn)差變小.故選:B11、A【解析】設(shè)直線,利用直線與圓相切,求得斜率,再利用弦長公式求弦長【詳解】設(shè)過點的直線.由直線與圓、圓均相切,得解得(1).設(shè)點到直線的距離為則(2).又圓的半徑直線截圓所得弦長結(jié)合(1)(2)兩式,解得12、D【解析】根據(jù)的圖象可得的單調(diào)性,從而得到在相應(yīng)范圍上的符號和極值點,據(jù)此可判斷的圖象.【詳解】由的圖象可知,在上為增函數(shù),且在上存在正數(shù),使得在上為增函數(shù),在為減函數(shù),故在有兩個不同的零點,且在這兩個零點的附近,有變化,故排除A,B.由在上為增函數(shù)可得在上恒成立,故排除C.故選:D.【點睛】本題考查導(dǎo)函數(shù)圖象的識別,此類問題應(yīng)根據(jù)原函數(shù)的單調(diào)性來考慮導(dǎo)函數(shù)的符號與零點情況,本題屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、-【解析】由雙曲線的方程可得,的坐標(biāo),設(shè)的坐標(biāo),代入雙曲線的方程可得的橫縱坐標(biāo)的關(guān)系,求出直線,的方程,令,分別求出,的縱坐標(biāo),求出的表達(dá)式,整理可得為定值【詳解】由雙曲線的方程可得,,設(shè),則,可得,直線的方程為:,令,則,可得,直線的方程為,令,可得,即,∴,,,故答案為:-另解:雙曲線方程化為,只是將的替換為-,故答案也是只需將中的替換為-即可.故答案為:-.14、【解析】由一元二次方程與一元二次不等式之間的關(guān)系可知,方程的兩根是,所以因此.考點:一元二次方程與一元二次不等式之間的關(guān)系.15、【解析】根據(jù)互斥事件與對立事件概率公式求解即可【詳解】設(shè)“2粒都是黑子”為事件,“2粒都是白子”為事件,“2粒恰好是同一色”為事件,“2粒不同色”為事件,則事件與事件是對立事件,所以因為2粒恰好是同一色的概率比不同色的概率大,所以,所以,又,且事件與互斥,所以,所以故答案為:16、4【解析】兩直線斜率均存在時,兩直線垂直,斜率相乘等于-1,據(jù)此即可求解.【詳解】由題可知,.故答案為:4.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】首先用列舉法,求得甲、乙兩人各抽一題的所有可能情況.(1)根據(jù)上述分析,分別求得“甲抽到判斷題,乙抽到選擇題(2)根據(jù)上述分析,求得“甲、乙兩人都抽到判斷題”的概率,根據(jù)對立事件概率計算公司求得“甲、乙兩人中至少有一人抽到選擇題【詳解】把3個選擇題因此基本事件的總數(shù)為.(1)記“甲抽到選擇題(2)記“甲、乙兩人至少有一人抽到選擇題【點睛】本小題主要考查互斥事件概率計算,考查對立事件,屬于基礎(chǔ)題.18、(1);(2)(i);(ii)證明見解析.【解析】(1)設(shè)恰好經(jīng)過3次檢驗就能把陽性樣本全部檢驗出來為事件A,由古典概型概率計算公式可得答案;(2)(i)由已知,可能取值分別為1,,求解概率然后求期望推出關(guān)于的關(guān)系式;(ii)由,計算出,再由,構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷函數(shù)的最值可得答案..【詳解】(1)設(shè)恰好經(jīng)過3次檢驗就能把陽性樣本全部檢驗出來為事件A,所以前2次檢驗中有一陽性有一陰性樣本第三次為陽性樣本,或者前3次均為陰性樣本,則.(2)(i),所以,可能取值分別為1,,,,因為得,因為,所以,.(ii)因為,由(i)知,所以,設(shè),,所以在單調(diào)遞增,所以由于,所以,即,得證.【(4)(5)選做】19、(1)在上單調(diào)遞減,在上單調(diào)遞增,函數(shù)有極小值,無極大值(2)【解析】(1)利用導(dǎo)數(shù)的正負(fù)判斷函數(shù)的單調(diào)性,然后由極值的定義求解即可;(2)分和兩種情況分析求解,當(dāng)時,不等式變形為在,上有解,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求解的最小值,即可得到答案【小問1詳解】當(dāng)時,,所以當(dāng)時;當(dāng)時,所以在上單調(diào)遞減,在上單調(diào)遞增,所以當(dāng)時函數(shù)有極小值,無極大值.【小問2詳解】因為在上有解,所以在上有解,當(dāng)時,不等式成立,此時,當(dāng)時在上有解,令,則由(1)知時,即,當(dāng)時;當(dāng)時,所以在上單調(diào)遞減,在上單調(diào)遞增,所以當(dāng)時,,所以,綜上可知,實數(shù)a的取值范圍是.點睛】利用導(dǎo)數(shù)研究不等式恒成立問題或有解問題的策略為:通常構(gòu)造新函數(shù)或參變量分離,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值從而求得參數(shù)的取值范圍20、(1)(2)【解析】(1)設(shè)點,求出直線、直線的斜率相乘可得,結(jié)合可得答案;(2)設(shè)直線l的方程為與橢圓方程聯(lián)立,代入得,設(shè),再利用基本不等式可得答案.【小問1詳解】由題意可得,,即,則,設(shè)點,∵Q為的中點,∴,∴直線斜率,直線的斜率,∴,又∵,∴,則,解得,∴橢圓C的方程為.【小問2詳解】由(1)知,設(shè)直線l的方程為,聯(lián)立化簡得,,設(shè),則,易知M,N到y(tǒng)軸的距離之和為,,設(shè),∴,當(dāng)且僅當(dāng)即時等號成立,所以當(dāng)時取得最大值,此時直線l的方程為.21、(1)證明見解析(2)【解析】(1)依題意可得,再由,即可得到平面,從而建立空間直角坐標(biāo)系,利用空間向量法證明即可;(2)利用空間向量法求出二面角的余弦值;【小問1詳解】證明:因為平面,平面,平面,則,,又,因為,,平面,所以平面,故以點為坐標(biāo)原點,建立空間直角坐標(biāo)系如圖所示,則,0,,,0,,,1,,,1,,,0,,,所以,則,所以,故;【小問2詳解】解:解:因為,設(shè)平面的法向量為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論