2025屆黃岡中學高一上數(shù)學期末檢測模擬試題含解析_第1頁
2025屆黃岡中學高一上數(shù)學期末檢測模擬試題含解析_第2頁
2025屆黃岡中學高一上數(shù)學期末檢測模擬試題含解析_第3頁
2025屆黃岡中學高一上數(shù)學期末檢測模擬試題含解析_第4頁
2025屆黃岡中學高一上數(shù)學期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆黃岡中學高一上數(shù)學期末檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,則下列結論中正確的是()A.的最大值為 B.在區(qū)間上單調遞增C.的圖象關于點對稱 D.的最小正周期為2.已知函數(shù)的圖像過點和,則在定義域上是A.奇函數(shù) B.偶函數(shù)C.減函數(shù) D.增函數(shù)3.下列函數(shù)中,既是奇函數(shù),又是增函數(shù)的是()①;②;③;④A.①② B.①④C.②③ D.③④4.設,,,則,,的大小關系為()A. B.C. D.5.青少年視力是社會普遍關注的問題,視力情況可借助視力表測量.通常用五分記錄法和小數(shù)記錄法記錄視力數(shù)據(jù),五分記錄法的數(shù)據(jù)L和小數(shù)記錄表的數(shù)據(jù)V的滿足.已知某同學視力的五分記錄法的數(shù)據(jù)為4.9,則其視力的小數(shù)記錄法的數(shù)據(jù)為()()A.1.5 B.1.2C.0.8 D.0.66.為了給地球減負,提高資源利用率,垃圾分類在全國漸成風尚,假設2021年兩市全年用于垃圾分類的資金均為萬元.在此基礎上,市每年投入的資金比上一年增長20%,市每年投入的資金比上一年增長50%,則市用于垃圾分類的資金開始超過市的兩倍的年份是()(參考數(shù)據(jù):)A.2022年 B.2025屆C.2025屆 D.2025年7.如果函數(shù)在上的圖象是連續(xù)不斷的一條曲線,那么“”是“函數(shù)在內(nèi)有零點”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件8.設集合U=R,,,則圖中陰影部分表示的集合為()A.{x|x≥1} B.{x|1≤x<2}C.{x|0<x≤1} D.{x|x≤0}9.某地區(qū)小學、初中、高中三個學段學生視力情況有較大差異,而男、女生視力情況差異不大,為了解該地區(qū)中小學生的視力情況,最合理的抽樣方法是()A.簡單隨機抽樣 B.按性別分層隨機抽樣C.按學段分層隨機抽樣 D.其他抽樣方法10.若sinα=-,且α為第三象限的角,則cosα的值等于()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)是定義在的偶函數(shù),且當時,若函數(shù)有8個零點,分別記為,,,,,,,,則的取值范圍是______.12.若冪函數(shù)在區(qū)間上是減函數(shù),則整數(shù)________13.已知,則的值為______.14.已知函數(shù)是定義在R上的增函數(shù),且,那么實數(shù)a的取值范圍為________15.命題“,”的否定是______16.如果函數(shù)滿足在集合上的值域仍是集合,則把函數(shù)稱為H函數(shù).例如:就是H函數(shù).下列函數(shù):①;②;③;④中,______是H函數(shù)(只需填寫編號)(注:“”表示不超過x的最大整數(shù))三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設兩個非零向量與不共線,(1)若,,,求證:A,B,D三點共線;(2)試確定實數(shù)k,使和共線18.已知集合,.(1)求,;(2)若,且,求實數(shù)的取值范圍.19.已知函數(shù),(1)求函數(shù)的最小正周期;(2)求函數(shù)的對稱中心;(3)當時,求的最大值和最小值.20.已知函數(shù),(Ⅰ)求的最小正周期及單調遞增區(qū)間;(Ⅱ)求在區(qū)間上的最大值和最小值21.一家貨物公司計劃在距離車站不超過8千米的范圍內(nèi)征地建造倉庫,經(jīng)過市場調查了解到下列信息:征地費用(單位:萬元)與倉庫到車站的距離(單位:千米)的關系為.為了交通方便,倉庫與車站之間還要修一條道路,修路費用(單位:萬元)與倉庫到車站的距離(單位:千米)成正比.若倉庫到車站的距離為3千米時,修路費用為18萬元.設為征地與修路兩項費用之和.(1)求的解析式;(2)倉庫應建在離車站多遠處,可使總費用最小,并求最小值

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】利用輔助角公式可得,根據(jù)正弦型函數(shù)最值、單調性、對稱性和最小正周期的求法依次判斷各個選項即可.【詳解】;對于A,,A錯誤;對于B,當時,,由正弦函數(shù)在上單調遞增可知:在上單調遞增,B正確;對于C,當時,,則關于成軸對稱,C錯誤;對于D,最小正周期,D錯誤.故選:B.2、D【解析】∵f(x)的圖象過點(4,0)和(7,1),∴∴f(x)=log4(x-3).∴f(x)是增函數(shù).∵f(x)的定義域是(3,+∞),不關于原點對稱.∴f(x)為非奇非偶函數(shù)故選D3、D【解析】對每個函【解析】判斷奇偶性及單調性即可.【詳解】對于①,,奇函數(shù),在和上分別單增,不滿足條件;對于②,,偶函數(shù),不滿足條件;對于③,,奇函數(shù),在R上單增,符合題意;對于④,,奇函數(shù),在R上單增,符合題意;故選:D4、D【解析】根據(jù)指數(shù)函數(shù)和對數(shù)函數(shù)的單調性,再結合0,1兩個中間量即可求得答案.【詳解】因為,,,所以.故選:D.5、C【解析】根據(jù)關系,當時,求出,再用指數(shù)表示,即可求解.【詳解】由,當時,,則.故選:C.6、D【解析】設經(jīng)過年后,市投入資金為萬元,市投入資金為萬元,即可表示出、,由題意可得,利用對數(shù)的運算性質解出的取值范圍即可【詳解】解:設經(jīng)過年后,市投入資金為萬元,則,市投入資金為萬元,則由題意可得,即,即,即,即所以,所以,即2025年該市用于垃圾分類的資金開始超過市的兩倍;故選:D7、A【解析】由零點存在性定理得出“若,則函數(shù)在內(nèi)有零點”舉反例即可得出正確答案.【詳解】由零點存在性定理可知,若,則函數(shù)在內(nèi)有零點而若函數(shù)在內(nèi)有零點,則不一定成立,比如在區(qū)間內(nèi)有零點,但所以“”是“函數(shù)在內(nèi)有零點”的充分而不必要條件故選:A【點睛】本題主要考查了充分不必要條件的判斷,屬于中檔題.8、D【解析】先求出集合A,B,再由圖可知陰影部分表示,從而可求得答案【詳解】因為等價于,解得,所以,所以或,要使得函數(shù)有意義,只需,解得,所以則由韋恩圖可知陰影部分表示.故選:D.9、C【解析】若總體由差異明顯的幾部分組成時,經(jīng)常采用分層抽樣的方法進行抽樣.【詳解】因為某地區(qū)小學、初中、高中三個學段學生的視力情況有較大差異,男、女生視力情況差異不大,然而學段的視力情況有較大差異,則應按學段分層抽樣,故選:.10、B【解析】先根據(jù)為第三象限角,可知,再根據(jù)平方關系,利用,可求的值【詳解】解:由題意,為第三象限角,故選.【點睛】本題以三角函數(shù)為載體,考查同角三角函數(shù)的平方關系,解題時應注意判斷三角函數(shù)的符號,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由偶函數(shù)的對稱性,將轉化為,再根據(jù)二次函數(shù)的對稱性及對數(shù)函數(shù)的性質可進一步轉化為,結合利用二次函數(shù)的性質即可求解.【詳解】解:因為函數(shù)有8個零點,所以直線與函數(shù)圖像交點有8個,如圖所示:設,因為函數(shù)是定義在的偶函數(shù),所以函數(shù)的圖像關于軸對稱,所以,且由二次函數(shù)對稱性有,由有,所以又,所以,所以,故答案為:.12、2【解析】由題意可得,求出的取值范圍,從而可出整數(shù)的值【詳解】因為冪函數(shù)在區(qū)間上是減函數(shù),所以,解得,因為,所以,故答案為:213、【解析】用誘導公式計算【詳解】,,故答案為:14、【解析】利用函數(shù)單調性的定義求解即可.【詳解】由已知條件得,解得,則實數(shù)的取值范圍為.故答案為:.15、.【解析】全稱命題的否定:將任意改為存在并否定原結論,即可知原命題的否定.【詳解】由全稱命題的否定為特稱命題,所以原命題的否定:.故答案為:.16、③④【解析】根據(jù)新定義進行判斷.【詳解】根據(jù)定義可以判斷①②在集合上的值域不是集合,顯然不是H函數(shù).③④是H函數(shù).③是H函數(shù),證明如下:顯然,不妨設,可得,即,恒有成立,滿足,總存在滿足是H函數(shù).④是H函數(shù),證明如下:顯然,不妨設,可得,即,恒有成立,滿足,總存在滿足H函數(shù).故答案為:③④三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)轉化為證明向量,共線,即可證明三點共線;(2)由共線定理可知,存在實數(shù)λ,使,利用向量相等,即可求解值.【詳解】(1)證明:,,,,共線,又∵它們有公共點B,∴A,B,D三點共線(2)和共線,∴存在實數(shù)λ,使,即,.,是兩個不共線的非零向量,,.18、(1),(2)【解析】(1)解出集合,利用并集、補集以及交集的定義可求得結果;(2)由已知條件可得出關于的不等式,即可解得實數(shù)的取值范圍.【小問1詳解】解:因為,或,所以,,.【小問2詳解】解:因為,所以或,解得或,所以的取值范圍為.19、(1)最小正周期(2),(3),【解析】(1)利用兩角和公式和二倍角公式對函數(shù)解析式化簡整理,利用周期公式求得函數(shù)的最小正周期,利用三角函數(shù)圖象和性質求得其對稱軸方程(2)根據(jù)正弦函數(shù)的性質計算可得;(3)利用的范圍求得的范圍,再根據(jù)正弦函數(shù)的性質求出函數(shù)在區(qū)間上最大值和最小值【小問1詳解】解:即所以的最小正周期為,【小問2詳解】解:令,,解得,,所以函數(shù)的對稱中心為,【小問3詳解】解:當時,,所以則當,即時,;當,即時,20、(Ⅰ)最小正周期是,單調遞增區(qū)間是.(Ⅱ)最大值為,最小值為【解析】詳解】試題分析:(Ⅰ)將函數(shù)解析式化為,可得最小正周期為;將代入正弦函數(shù)的增區(qū)間可得函數(shù)的單調遞增區(qū)間是.(Ⅱ)由可得,故,從而可得函數(shù)在區(qū)間上的最大值為,最小值為試題解析:(Ⅰ),所以函數(shù)的最小正周期是,由,得,所以的單調遞增區(qū)間是.(Ⅱ)當時,,所以,所以,所以在區(qū)間上的最大值為,最小值為點睛:解決三角函數(shù)綜合題(1)將f(x)化為的形式;(2)構造;(3)逆用和(差)角公式得到(其中φ為輔助

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論