版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
廣東省惠州市2025屆高一上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.函數(shù)與的圖象交于兩點(diǎn),為坐標(biāo)原點(diǎn),則的面積為()A. B.C. D.2.已知冪函數(shù)過點(diǎn)則A.,且在上單調(diào)遞減B.,且在單調(diào)遞增C.且在上單調(diào)遞減D.,且在上單調(diào)遞增3.中,設(shè),,為中點(diǎn),則A. B.C. D.4.函數(shù)取最小值時(shí)的值為()A.6 B.2C. D.5.已知全集,則()A. B.C. D.6.函數(shù),則f(log23)=()A.3 B.6C.12 D.247.已知全集,集合1,2,3,,,則A.1, B.C. D.3,8.設(shè)函數(shù),,則函數(shù)的零點(diǎn)個(gè)數(shù)是A.4 B.3C.2 D.19.函數(shù)的圖像的一個(gè)對(duì)稱中心是A. B.C. D.10.已知函數(shù),且在上的最大值為,若函數(shù)有四個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若函數(shù)的定義域?yàn)椋瑒t函數(shù)的定義域?yàn)開_____12.tan22°+tan23°+tan22°tan23°=_______13.用表示a,b中的較小者,則的最大值是____.14.某超市對(duì)6個(gè)時(shí)間段內(nèi)使用兩種移動(dòng)支付方式的次數(shù)用莖葉圖作了統(tǒng)計(jì),如圖所示,使用支付方式的次數(shù)的極差為______;若使用支付方式的次數(shù)的中位數(shù)為17,則_______.支付方式A支付方式B420671053126m9115.若“”是“”的必要不充分條件,則實(shí)數(shù)的取值范圍為___________.16.設(shè)奇函數(shù)對(duì)任意的,,有,且,則的解集___________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知向量,,.(Ⅰ)若關(guān)于的方程有解,求實(shí)數(shù)的取值范圍;(Ⅱ)若且,求.18.如圖所示,是圓柱的母線,是圓柱底面圓的直徑,是底面圓周上異于的任意一點(diǎn),.(1)求證:;(2)求三棱錐體積的最大值,并寫出此時(shí)三棱錐外接球的表面積.19.已知直線l過點(diǎn)和直線:平行,圓O的方程為,直線l與圓O交于B,C兩點(diǎn).(1)求直線l的方程;(2)求直線l被圓O所截得的弦長.20.給出以下定義:設(shè)m為給定的實(shí)常數(shù),若函數(shù)在其定義域內(nèi)存在實(shí)數(shù),使得成立,則稱函數(shù)為“函數(shù)”.(1)判斷函數(shù)是否為“函數(shù)”;(2)若函數(shù)為“函數(shù)”,求實(shí)數(shù)a的取值范圍;(3)已知為“函數(shù)”,設(shè).若對(duì)任意的,,當(dāng)時(shí),都有成立,求實(shí)數(shù)的最大值.21.如圖,在直三棱柱中,已知,,設(shè)的中點(diǎn)為,求證:(1);(2).
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】令,解方程可求得,由此可求得兩點(diǎn)坐標(biāo),得到關(guān)于點(diǎn)對(duì)稱,由可求得結(jié)果.【詳解】令,,解得:或(舍),,或,則或,不妨令,,則關(guān)于點(diǎn)對(duì)稱,.故選:A.2、A【解析】由冪函數(shù)過點(diǎn),求出,從而,在上單調(diào)遞減【詳解】冪函數(shù)過點(diǎn),,解得,,在上單調(diào)遞減故選A.【點(diǎn)睛】本題考查冪函數(shù)解析式的求法,并判斷其單調(diào)性,考查冪函數(shù)的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.3、C【解析】分析:直接利用向量的三角形法則求.詳解:由題得,故答案為C.點(diǎn)睛:(1)本題主要考查向量的加法和減法法則,意在考查學(xué)生對(duì)這些基礎(chǔ)知識(shí)的掌握水平和轉(zhuǎn)化能力.(2)向量的加法法則:,向量的減法法則:.4、B【解析】變形為,再根據(jù)基本不等式可得結(jié)果.【詳解】因?yàn)?,所以,所以,?dāng)且僅當(dāng)且,即時(shí)等號(hào)成立.故選:B【點(diǎn)睛】本題考查了利用基本不等式求最值時(shí),取等號(hào)的條件,屬于基礎(chǔ)題.5、C【解析】根據(jù)補(bǔ)集的定義計(jì)算可得;【詳解】解:因?yàn)?,所以;故選:C6、B【解析】由對(duì)數(shù)函數(shù)的性質(zhì)可得,再代入分段函數(shù)解析式運(yùn)算即可得解.【詳解】由題意,,所以.故選:B.7、C【解析】可求出集合B,然后進(jìn)行交集的運(yùn)算,即可求解,得到答案【詳解】由題意,可得集合,又由,所以故選C【點(diǎn)睛】本題主要考查了集合的交集運(yùn)算,其中解答中正確求解集合B,熟記集合的交集運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.8、B【解析】函數(shù)的零點(diǎn)個(gè)數(shù)就是函數(shù)的圖象和函數(shù)的圖象的交點(diǎn)個(gè)數(shù),分別畫出函數(shù)的圖象和函數(shù)的圖象,如圖,由圖知,它們的交點(diǎn)個(gè)數(shù)是,函數(shù)的零點(diǎn)個(gè)數(shù)是,故選B.【方法點(diǎn)睛】已知函數(shù)零點(diǎn)(方程根)的個(gè)數(shù)求參數(shù)取值范圍的三種常用的方法:(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決;(3)數(shù)形結(jié)合法:先對(duì)解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解.一是轉(zhuǎn)化為兩個(gè)函數(shù)的圖象的交點(diǎn)個(gè)數(shù)問題,畫出兩個(gè)函數(shù)的圖象,其交點(diǎn)的個(gè)數(shù)就是函數(shù)零點(diǎn)的個(gè)數(shù),二是轉(zhuǎn)化為的交點(diǎn)個(gè)數(shù)的圖象的交點(diǎn)個(gè)數(shù)問題.9、C【解析】令,得,所以函數(shù)的圖像的對(duì)稱中心是,然后賦值即可【詳解】因?yàn)榈膱D像的對(duì)稱中心為.由,得,所以函數(shù)的圖像的對(duì)稱中心是.令,得.【點(diǎn)睛】本題主要考查正切函數(shù)的對(duì)稱性,屬基礎(chǔ)題10、B【解析】由在上最大值為,討論可求出,從而,若有4個(gè)零點(diǎn),則函數(shù)與有4個(gè)交點(diǎn),畫出圖象,結(jié)合圖象求解即可【詳解】若,則函數(shù)在上單調(diào)遞增,所以的最小值為,不合題意,則,要使函數(shù)在上的最大值為如果,即,則,解得,不合題意;若,即,則解得即,則如圖所示,若有4個(gè)零點(diǎn),則函數(shù)與有4個(gè)交點(diǎn),只有函數(shù)的圖象開口向上,即當(dāng)與)有一個(gè)交點(diǎn)時(shí),方程有一個(gè)根,得,此時(shí)函數(shù)有二個(gè)不同的零點(diǎn),要使函數(shù)有四個(gè)不同的零點(diǎn),與有兩個(gè)交點(diǎn),則拋物線的圖象開口要比的圖象開口大,可得,所以,即實(shí)數(shù)a的取值范圍為故選:B【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查函數(shù)與方程的綜合應(yīng)用,考查二次函數(shù)的性質(zhì)的應(yīng)用,考查數(shù)形結(jié)合的思想,解題的關(guān)鍵是由已知條件求出的值,然后將問題轉(zhuǎn)化為函數(shù)與有4個(gè)交點(diǎn),畫出函數(shù)圖象,結(jié)合圖象求解即可,屬于較難題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】利用的定義域,求出的值域,再求x的取值范圍.【詳解】的定義域?yàn)榧吹亩x域?yàn)楣蚀鸢笧椋?2、1【解析】解:因?yàn)閠an22°+tan23°+tan22°tan23°=tan(22°+23°)(1-tan22°tan23°)+tan22°tan23°=tan45°=113、【解析】分別做出和的圖象,數(shù)形結(jié)合即可求解.【詳解】解:分別做出和的圖象,如圖所示:又,當(dāng)時(shí),解得:,故當(dāng)時(shí),.故答案為:.14、①.;②.【解析】根據(jù)極差,中位數(shù)的定義即可計(jì)算.【詳解】解:由莖葉圖可知:使用支付方式的次數(shù)的極差為:;使用支付方式的次數(shù)的中位數(shù)為17,易知:,解得:.故答案為:;.15、##【解析】由題意,根據(jù)必要不充分條件可得?,從而建立不等關(guān)系即可求解.【詳解】解:不等式的解集為,不等式的解集為,因?yàn)椤啊笔恰啊钡谋匾怀浞謼l件,所以?,所以,解得,所以實(shí)數(shù)的取值范圍為,故答案為:.16、【解析】可根據(jù)函數(shù)的單調(diào)性和奇偶性,結(jié)合和,分析出的正負(fù)情況,求解.【詳解】對(duì)任意,,有故在上為減函數(shù),由奇函數(shù)的對(duì)稱性可知在上為減函數(shù),則則,,,;,;,;,.故解集為:故答案為:【點(diǎn)睛】正確理解奇函數(shù)和偶函數(shù)的定義,必須把握好兩個(gè)問題:(1)定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要非充分條件;(2)f(-x)=-f(x)或f(-x)=f(x)是定義域上的恒等式.奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,偶函數(shù)的圖象關(guān)于y軸對(duì)稱,反之也成立.利用這一性質(zhì)可簡化一些函數(shù)圖象的畫法,也可以利用它去判斷函數(shù)的奇偶性三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(Ⅰ)向量,,,所以.關(guān)于的方程有解,即關(guān)于的方程有解.因?yàn)?,所以?dāng)時(shí),方程有解,即解得實(shí)數(shù)的取值范圍;(Ⅱ)因?yàn)?,所以,?當(dāng)時(shí),,由,解得當(dāng)時(shí),,由,解得.試題解析:(Ⅰ)∵向量,,,∴.關(guān)于的方程有解,即關(guān)于的方程有解.∵,∴當(dāng)時(shí),方程有解.則實(shí)數(shù)的取值范圍為.(Ⅱ)因?yàn)?,所以,?當(dāng)時(shí),,.當(dāng)時(shí),,.18、(1)見解析;(2).【解析】(1)由圓柱易知平面,所以,由圓的性質(zhì)易得,進(jìn)而可證平面;(2)由已知得三棱錐的高,當(dāng)直角的面積最大時(shí),三棱錐的體積最大,當(dāng)點(diǎn)在弧中點(diǎn)時(shí)最大,此時(shí)外接球的直徑即可得解.試題解析:(1)證明:∵已知是圓柱的母線,.∴平面∵是圓柱底面圓的直徑,是底面圓周上異于的任意一點(diǎn),∴,又,∴平面又平面(2)解:由已知得三棱錐的高,當(dāng)直角的面積最大時(shí),三棱錐的體積最大,當(dāng)點(diǎn)在弧中點(diǎn)時(shí)最大,,結(jié)合(1)可得三棱錐的外接球的直徑即為,所以此時(shí)外接球的直徑..點(diǎn)睛:一般外接球需要求球心和半徑,首先應(yīng)確定球心的位置,借助于外接球的性質(zhì),球心到各頂點(diǎn)距離相等,這樣可先確定幾何體中部分點(diǎn)組成的多邊形的外接圓的圓心,過圓心且垂直于多邊形所在平面的直線上任一點(diǎn)到多邊形的頂點(diǎn)的距離相等,然后同樣的方法找到另一個(gè)多邊形的各頂點(diǎn)距離相等的直線(這兩個(gè)多邊形需有公共點(diǎn)),這樣兩條直線的交點(diǎn),就是其外接球的球心,再根據(jù)半徑,頂點(diǎn)到底面中心的距離,球心到底面中心的距離,構(gòu)成勾股定理求解,有時(shí)也可利用補(bǔ)體法得到半徑,例:三條側(cè)棱兩兩垂直的三棱錐,可以補(bǔ)成長方體,它們是同一個(gè)外接球.19、(1)(2)【解析】(1)通過直線l和直線:平行,得到斜率,再由直線l過點(diǎn),用點(diǎn)斜式寫出方程.(2)先求出圓心O到直線l的距離,再根據(jù)弦長公式求解.【詳解】(1),,又因?yàn)橹本€l過點(diǎn)∴直線l的方程為:,即(2)因?yàn)閳A心O到直線l的距離為,所以【點(diǎn)睛】本題主要考查了直線方程的求法和直線與圓的位置關(guān)系中的弦長問題,還考查了運(yùn)算求解的能力,屬于中檔題.20、(1)是(2)(3)【解析】(1)根據(jù)定義判得時(shí),滿足,進(jìn)而判斷;(2)根據(jù)題意得,,進(jìn)而整理得存在實(shí)數(shù)使得,再結(jié)合和討論求解即可;(3)由題知,故不妨設(shè),進(jìn)而得,故構(gòu)造函數(shù),則函數(shù)在上單調(diào)遞增,在作出函數(shù)圖像,數(shù)形結(jié)合求解即可.【小問1詳解】解:的定義域?yàn)?,假設(shè)函數(shù)是“函數(shù),則存在定義域內(nèi)的實(shí)數(shù)使得,所以,所以,所以,所以函數(shù)“函數(shù)【小問2詳解】解:函數(shù)有意義,則,定義域?yàn)橐驗(yàn)楹瘮?shù)為“函數(shù)”,所以存在實(shí)數(shù)使得成立,即存在實(shí)數(shù)使得,所以存在實(shí)數(shù)使得成立,即,所以當(dāng)時(shí),,滿足題意;當(dāng)時(shí),,即,解得且,所以實(shí)數(shù)a的取值范圍是【小問3詳解】解:由為“函數(shù)”得,即,所以,不妨設(shè),則由得,所以故令,則在上單調(diào)遞增,又,作出函數(shù)圖像如圖,所以實(shí)數(shù)的取值范圍為,即實(shí)數(shù)的最大值為21、⑴見解析;⑵見解析.【解析】(1)要證明線面平行,轉(zhuǎn)證線線平行,在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度木材加工廠蟲害防治與環(huán)保技術(shù)合作協(xié)議3篇
- 2025年度生物科技研發(fā)合伙人合同2篇
- 桌面應(yīng)用隱私保護(hù)策略-深度研究
- 異構(gòu)數(shù)據(jù)均值最大化-深度研究
- 2025年度代理房地產(chǎn)銷售市場推廣合作協(xié)議4篇
- 二零二五年度出租車租賃與乘客滿意度提升合同3篇
- 2025年度木工行業(yè)產(chǎn)業(yè)鏈整合與資源共享協(xié)議4篇
- 2025版女方因男方家庭暴力提出離婚的緊急安置協(xié)議書范本4篇
- 二零二五年度電梯應(yīng)急救援預(yù)案合作協(xié)議3篇
- 2025年度農(nóng)機(jī)維修配件直銷代理合作協(xié)議3篇
- 小兒甲型流感護(hù)理查房
- 霧化吸入療法合理用藥專家共識(shí)(2024版)解讀
- 2021年全國高考物理真題試卷及解析(全國已卷)
- 拆遷評(píng)估機(jī)構(gòu)選定方案
- 趣味知識(shí)問答100道
- 鋼管豎向承載力表
- 2024年新北師大版八年級(jí)上冊(cè)物理全冊(cè)教學(xué)課件(新版教材)
- 人教版數(shù)學(xué)四年級(jí)下冊(cè)核心素養(yǎng)目標(biāo)全冊(cè)教學(xué)設(shè)計(jì)
- JJG 692-2010無創(chuàng)自動(dòng)測量血壓計(jì)
- 三年級(jí)下冊(cè)口算天天100題(A4打印版)
- CSSD職業(yè)暴露與防護(hù)
評(píng)論
0/150
提交評(píng)論