版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
北京臨川學(xué)校2024屆高三下學(xué)期第五次模擬數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,,則A. B. C. D.2.已知圓與拋物線的準(zhǔn)線相切,則的值為()A.1 B.2 C. D.43.已知方程表示的曲線為的圖象,對于函數(shù)有如下結(jié)論:①在上單調(diào)遞減;②函數(shù)至少存在一個零點(diǎn);③的最大值為;④若函數(shù)和圖象關(guān)于原點(diǎn)對稱,則由方程所確定;則正確命題序號為()A.①③ B.②③ C.①④ D.②④4.下列判斷錯誤的是()A.若隨機(jī)變量服從正態(tài)分布,則B.已知直線平面,直線平面,則“”是“”的充分不必要條件C.若隨機(jī)變量服從二項(xiàng)分布:,則D.是的充分不必要條件5.函數(shù)的圖象大致為()A. B.C. D.6.已知函數(shù)的部分圖象如圖所示,將此圖象分別作以下變換,那么變換后的圖象可以與原圖象重合的變換方式有()①繞著軸上一點(diǎn)旋轉(zhuǎn);②沿軸正方向平移;③以軸為軸作軸對稱;④以軸的某一條垂線為軸作軸對稱.A.①③ B.③④ C.②③ D.②④7.二項(xiàng)式的展開式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,則展開式中的常數(shù)項(xiàng)是()A.180 B.90 C.45 D.3608.已知角的終邊經(jīng)過點(diǎn),則A. B.C. D.9.已知,,是平面內(nèi)三個單位向量,若,則的最小值()A. B. C. D.510.已知,是雙曲線的兩個焦點(diǎn),過點(diǎn)且垂直于軸的直線與相交于,兩點(diǎn),若,則△的內(nèi)切圓的半徑為()A. B. C. D.11.已知邊長為4的菱形,,為的中點(diǎn),為平面內(nèi)一點(diǎn),若,則()A.16 B.14 C.12 D.812.本次模擬考試結(jié)束后,班級要排一張語文、數(shù)學(xué)、英語、物理、化學(xué)、生物六科試卷講評順序表,若化學(xué)排在生物前面,數(shù)學(xué)與物理不相鄰且都不排在最后,則不同的排表方法共有()A.72種 B.144種 C.288種 D.360種二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)過定點(diǎn)________.14.(5分)在平面直角坐標(biāo)系中,過點(diǎn)作傾斜角為的直線,已知直線與圓相交于兩點(diǎn),則弦的長等于____________.15.已知,,求____________.16.已知函數(shù),則過原點(diǎn)且與曲線相切的直線方程為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,平面平面,底面為梯形.,且與均為正三角形.為的中點(diǎn)為重心,與相交于點(diǎn).(1)求證:平面;(2)求三棱錐的體積.18.(12分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.19.(12分)如圖,在平面直角坐標(biāo)系xOy中,已知橢圓C:(a>b>0)的離心率為.且經(jīng)過點(diǎn)(1,),A,B分別為橢圓C的左、右頂點(diǎn),過左焦點(diǎn)F的直線l交橢圓C于D,E兩點(diǎn)(其中D在x軸上方).(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若△AEF與△BDF的面積之比為1:7,求直線l的方程.20.(12分)已知函數(shù).(1)求曲線在點(diǎn)處的切線方程;(2)若對任意的,當(dāng)時,都有恒成立,求最大的整數(shù).(參考數(shù)據(jù):)21.(12分)在平面直角坐標(biāo)系中,曲線:(為參數(shù),),曲線:(為參數(shù)).若曲線和相切.(1)在以為極點(diǎn),軸非負(fù)半軸為極軸的極坐標(biāo)系中,求曲線的普通方程;(2)若點(diǎn),為曲線上兩動點(diǎn),且滿足,求面積的最大值.22.(10分)已知中,,,是上一點(diǎn).(1)若,求的長;(2)若,,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】分析:根據(jù)集合可直接求解.詳解:,,故選C點(diǎn)睛:集合題也是每年高考的必考內(nèi)容,一般以客觀題形式出現(xiàn),一般解決此類問題時要先將參與運(yùn)算的集合化為最簡形式,如果是“離散型”集合可采用Venn圖法解決,若是“連續(xù)型”集合則可借助不等式進(jìn)行運(yùn)算.2、B【解析】
因?yàn)閳A與拋物線的準(zhǔn)線相切,則圓心為(3,0),半徑為4,根據(jù)相切可知,圓心到直線的距離等于半徑,可知的值為2,選B.【詳解】請?jiān)诖溯斎朐斀猓?、C【解析】
分四類情況進(jìn)行討論,然后畫出相對應(yīng)的圖象,由圖象可以判斷所給命題的真假性.【詳解】(1)當(dāng)時,,此時不存在圖象;(2)當(dāng)時,,此時為實(shí)軸為軸的雙曲線一部分;(3)當(dāng)時,,此時為實(shí)軸為軸的雙曲線一部分;(4)當(dāng)時,,此時為圓心在原點(diǎn),半徑為1的圓的一部分;畫出的圖象,由圖象可得:對于①,在上單調(diào)遞減,所以①正確;對于②,函數(shù)與的圖象沒有交點(diǎn),即沒有零點(diǎn),所以②錯誤;對于③,由函數(shù)圖象的對稱性可知③錯誤;對于④,函數(shù)和圖象關(guān)于原點(diǎn)對稱,則中用代替,用代替,可得,所以④正確.故選:C【點(diǎn)睛】本題主要考查了雙曲線的簡單幾何性質(zhì),函數(shù)的圖象與性質(zhì),函數(shù)的零點(diǎn)概念,考查了數(shù)形結(jié)合的數(shù)學(xué)思想.4、D【解析】
根據(jù)正態(tài)分布、空間中點(diǎn)線面的位置關(guān)系、充分條件與必要條件的判斷、二項(xiàng)分布及不等式的性質(zhì)等知識,依次對四個選項(xiàng)加以分析判斷,進(jìn)而可求解.【詳解】對于選項(xiàng),若隨機(jī)變量服從正態(tài)分布,根據(jù)正態(tài)分布曲線的對稱性,有,故選項(xiàng)正確,不符合題意;對于選項(xiàng),已知直線平面,直線平面,則當(dāng)時一定有,充分性成立,而當(dāng)時,不一定有,故必要性不成立,所以“”是“”的充分不必要條件,故選項(xiàng)正確,不符合題意;對于選項(xiàng),若隨機(jī)變量服從二項(xiàng)分布:,則,故選項(xiàng)正確,不符合題意;對于選項(xiàng),,僅當(dāng)時有,當(dāng)時,不成立,故充分性不成立;若,僅當(dāng)時有,當(dāng)時,不成立,故必要性不成立.因而是的既不充分也不必要條件,故選項(xiàng)不正確,符合題意.故選:D【點(diǎn)睛】本題考查正態(tài)分布、空間中點(diǎn)線面的位置關(guān)系、充分條件與必要條件的判斷、二項(xiàng)分布及不等式的性質(zhì)等知識,考查理解辨析能力與運(yùn)算求解能力,屬于基礎(chǔ)題.5、A【解析】
確定函數(shù)在定義域內(nèi)的單調(diào)性,計(jì)算時的函數(shù)值可排除三個選項(xiàng).【詳解】時,函數(shù)為減函數(shù),排除B,時,函數(shù)也是減函數(shù),排除D,又時,,排除C,只有A可滿足.故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,可通過解析式研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對稱性等等排除,可通過特殊的函數(shù)值,函數(shù)值的正負(fù),函數(shù)值的變化趨勢排除,最后剩下的一個即為正確選項(xiàng).6、D【解析】
計(jì)算得到,,故函數(shù)是周期函數(shù),軸對稱圖形,故②④正確,根據(jù)圖像知①③錯誤,得到答案.【詳解】,,,當(dāng)沿軸正方向平移個單位時,重合,故②正確;,,故,函數(shù)關(guān)于對稱,故④正確;根據(jù)圖像知:①③不正確;故選:.【點(diǎn)睛】本題考查了根據(jù)函數(shù)圖像判斷函數(shù)性質(zhì),意在考查學(xué)生對于三角函數(shù)知識和圖像的綜合應(yīng)用.7、A【解析】試題分析:因?yàn)榈恼归_式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,所以,,令,則,.考點(diǎn):1.二項(xiàng)式定理;2.組合數(shù)的計(jì)算.8、D【解析】因?yàn)榻堑慕K邊經(jīng)過點(diǎn),所以,則,即.故選D.9、A【解析】
由于,且為單位向量,所以可令,,再設(shè)出單位向量的坐標(biāo),再將坐標(biāo)代入中,利用兩點(diǎn)間的距離的幾何意義可求出結(jié)果.【詳解】解:設(shè),,,則,從而,等號可取到.故選:A【點(diǎn)睛】此題考查的是平面向量的坐標(biāo)、模的運(yùn)算,利用整體代換,再結(jié)合距離公式求解,屬于難題.10、B【解析】
設(shè)左焦點(diǎn)的坐標(biāo),由AB的弦長可得a的值,進(jìn)而可得雙曲線的方程,及左右焦點(diǎn)的坐標(biāo),進(jìn)而求出三角形ABF2的面積,再由三角形被內(nèi)切圓的圓心分割3個三角形的面積之和可得內(nèi)切圓的半徑.【詳解】由雙曲線的方程可設(shè)左焦點(diǎn),由題意可得,由,可得,所以雙曲線的方程為:所以,所以三角形ABF2的周長為設(shè)內(nèi)切圓的半徑為r,所以三角形的面積,所以,解得,故選:B【點(diǎn)睛】本題考查求雙曲線的方程和雙曲線的性質(zhì)及三角形的面積的求法,內(nèi)切圓的半徑與三角形長周長的一半之積等于三角形的面積可得半徑的應(yīng)用,屬于中檔題.11、B【解析】
取中點(diǎn),可確定;根據(jù)平面向量線性運(yùn)算和數(shù)量積的運(yùn)算法則可求得,利用可求得結(jié)果.【詳解】取中點(diǎn),連接,,,即.,,,則.故選:.【點(diǎn)睛】本題考查平面向量數(shù)量積的求解問題,涉及到平面向量的線性運(yùn)算,關(guān)鍵是能夠?qū)⑺笙蛄窟M(jìn)行拆解,進(jìn)而利用平面向量數(shù)量積的運(yùn)算性質(zhì)進(jìn)行求解.12、B【解析】
利用分步計(jì)數(shù)原理結(jié)合排列求解即可【詳解】第一步排語文,英語,化學(xué),生物4種,且化學(xué)排在生物前面,有種排法;第二步將數(shù)學(xué)和物理插入前4科除最后位置外的4個空擋中的2個,有種排法,所以不同的排表方法共有種.選.【點(diǎn)睛】本題考查排列的應(yīng)用,不相鄰采用插空法求解,準(zhǔn)確分步是關(guān)鍵,是基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
令,,與參數(shù)無關(guān),即可得到定點(diǎn).【詳解】由指數(shù)函數(shù)的性質(zhì),可得,函數(shù)值與參數(shù)無關(guān),所有過定點(diǎn).故答案為:【點(diǎn)睛】此題考查函數(shù)的定點(diǎn)問題,關(guān)鍵在于找出自變量的取值使函數(shù)值與參數(shù)無關(guān),熟記常見函數(shù)的定點(diǎn)可以節(jié)省解題時間.14、【解析】
方法一:依題意,知直線的方程為,代入圓的方程化簡得,解得或,從而得或,則.方法二:依題意,知直線的方程為,代入圓的方程化簡得,設(shè),則,故.方法三:將圓的方程配方得,其半徑,圓心到直線的距離,則.15、【解析】
求出向量的坐標(biāo),然后利用向量數(shù)量積的坐標(biāo)運(yùn)算可計(jì)算出結(jié)果.【詳解】,,,因此,.故答案為:.【點(diǎn)睛】本題考查平面向量數(shù)量積的坐標(biāo)運(yùn)算,考查計(jì)算能力,屬于基礎(chǔ)題.16、【解析】
設(shè)切點(diǎn)坐標(biāo)為,利用導(dǎo)數(shù)求出曲線在切點(diǎn)的切線方程,將原點(diǎn)代入切線方程,求出的值,于此可得出所求的切線方程.【詳解】設(shè)切點(diǎn)坐標(biāo)為,,,,則曲線在點(diǎn)處的切線方程為,由于該直線過原點(diǎn),則,得,因此,則過原點(diǎn)且與曲線相切的直線方程為,故答案為.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查過點(diǎn)作函數(shù)圖象的切線方程,求解思路是:(1)先設(shè)切點(diǎn)坐標(biāo),并利用導(dǎo)數(shù)求出切線方程;(2)將所過點(diǎn)的坐標(biāo)代入切線方程,求出參數(shù)的值,可得出切點(diǎn)的坐標(biāo);(3)將參數(shù)的值代入切線方程,可得出切線的方程.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)第(1)問,連交于,連接.證明//,即證平面.(2)第(2)問,主要是利用體積變換,,求得三棱錐的體積.【詳解】(1)方法一:連交于,連接.由梯形,且,知又為的中點(diǎn),為的重心,∴在中,,故//.又平面,平面,∴平面.方法二:過作交PD于N,過F作FM||AD交CD于M,連接MN,G為△PAD的重心,又ABCD為梯形,AB||CD,又由所作GN||AD,FM||AD,得//,所以GNMF為平行四邊形.因?yàn)镚F||MN,(2)方法一:由平面平面,與均為正三角形,為的中點(diǎn)∴,,得平面,且由(1)知//平面,∴又由梯形ABCD,AB||CD,且,知又為正三角形,得,∴,得∴三棱錐的體積為.方法二:由平面平面,與均為正三角形,為的中點(diǎn)∴,,得平面,且由,∴而又為正三角形,得,得.∴,∴三棱錐的體積為.18、(1);(2)【解析】
(1)根據(jù)同角三角函數(shù)式可求得,結(jié)合正弦和角公式求得,即可求得,進(jìn)而由三角函數(shù)(2)設(shè)根據(jù)余弦定理及基本不等式,可求得的最大值,結(jié)合三角形面積公式可求得的最大值,即可求得四邊形面積的最大值.【詳解】(1),則由同角三角函數(shù)關(guān)系式可得,則,則,所以.(2)設(shè)在中由余弦定理可得,代入可得,由基本不等式可知,即,當(dāng)且僅當(dāng)時取等號,由三角形面積公式可得,所以四邊形面積的最大值為.【點(diǎn)睛】本題考查了正弦和角公式化簡三角函數(shù)式的應(yīng)用,余弦定理及不等式式求最值的綜合應(yīng)用,屬于中檔題.19、(1)(2).【解析】
(1)利用離心率和橢圓經(jīng)過的點(diǎn)建立方程組,求解即可.(2)把面積之比轉(zhuǎn)化為縱坐標(biāo)之間的關(guān)系,聯(lián)立方程結(jié)合韋達(dá)定理可求.【詳解】解:(1)設(shè)焦距為2c,由題意知:;解得,所以橢圓的方程為.(2)由(1)知:F(﹣1,0),設(shè)l:,D(,),E(,),<0<①,,,②;③;由①②得:,,代入③得:,又,故,因此,直線l的方程為.【點(diǎn)睛】本題主要考查橢圓方程的求解及橢圓中的面積問題,橢圓方程一般利用待定系數(shù)法,建立方程組進(jìn)行求解,面積問題的合理轉(zhuǎn)化是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).20、(1)(2)2【解析】
(1)先求得切點(diǎn)坐標(biāo),利用導(dǎo)數(shù)求得切線的斜率,由此求得切線方程.(2)對分成,兩種情況進(jìn)行分類討論.當(dāng)時,將不等式轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的最小值(設(shè)為)的取值范圍,由的得在上恒成立,結(jié)合一元二次不等式恒成立,判別式小于零列不等式,解不等式求得的取值范圍.【詳解】(1)已知函數(shù),則處即為,又,,可知函數(shù)過點(diǎn)的切線為,即.(2)注意到,不等式中,當(dāng)時,顯然成立;當(dāng)時,不等式可化為令,則,,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版E管材國際環(huán)保認(rèn)證合同2篇
- 《科幻小說賞析與寫作》 課件 郭琦 第1-5章 導(dǎo)論科幻小說賞析與寫作的“關(guān)鍵詞”-“反烏托邦”的警示與預(yù)言-《一九八四》
- 電影票房未來發(fā)展趨勢報告
- 2024年浙江工貿(mào)職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測驗(yàn)歷年參考題庫(頻考版)含答案解析
- 2024年河南經(jīng)貿(mào)職業(yè)學(xué)院高職單招語文歷年參考題庫含答案解析
- 2024年河南地礦職業(yè)學(xué)院高職單招語文歷年參考題庫含答案解析
- 二零二五年急救藥品生產(chǎn)許可證申請與審批合同3篇
- 2024年江陰職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測驗(yàn)歷年參考題庫(頻考版)含答案解析
- 2024年江蘇海事職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測驗(yàn)歷年參考題庫(頻考版)含答案解析
- 二零二五年度校園自來水管道改造合同2篇
- 2024年新課標(biāo)高考化學(xué)試卷(適用黑龍江、遼寧、吉林地區(qū) 真題+答案)
- 鈷酸鋰-安全技術(shù)說明書MSDS
- 江蘇省“大唐杯”全國大學(xué)生新一代信息通信技術(shù)大賽省賽題庫(含答案)
- (正式版)JBT 9229-2024 剪叉式升降工作平臺
- 如何做好談話筆錄
- 偏頭痛的治療及護(hù)理
- 世界十大物理學(xué)家圖文
- 醫(yī)學(xué)研究生文獻(xiàn)檢索實(shí)例
- 三年級數(shù)學(xué)(上)計(jì)算題及答案集錦
- 西師大版六年級上冊分?jǐn)?shù)除法練習(xí)300題及答案
- 高一期末家長會課件
評論
0/150
提交評論