![歐洲央行-識別歐洲央行貨幣政策的統(tǒng)計方法 A statistical approach to identifying ECB monetary policy_第1頁](http://file4.renrendoc.com/view14/M00/27/25/wKhkGWcyBPKAFukPAABwdCmEIY4991.jpg)
![歐洲央行-識別歐洲央行貨幣政策的統(tǒng)計方法 A statistical approach to identifying ECB monetary policy_第2頁](http://file4.renrendoc.com/view14/M00/27/25/wKhkGWcyBPKAFukPAABwdCmEIY49912.jpg)
![歐洲央行-識別歐洲央行貨幣政策的統(tǒng)計方法 A statistical approach to identifying ECB monetary policy_第3頁](http://file4.renrendoc.com/view14/M00/27/25/wKhkGWcyBPKAFukPAABwdCmEIY49913.jpg)
![歐洲央行-識別歐洲央行貨幣政策的統(tǒng)計方法 A statistical approach to identifying ECB monetary policy_第4頁](http://file4.renrendoc.com/view14/M00/27/25/wKhkGWcyBPKAFukPAABwdCmEIY49914.jpg)
![歐洲央行-識別歐洲央行貨幣政策的統(tǒng)計方法 A statistical approach to identifying ECB monetary policy_第5頁](http://file4.renrendoc.com/view14/M00/27/25/wKhkGWcyBPKAFukPAABwdCmEIY49915.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
EUROPEANCENTRALBANK
EUROSYSTEM
WorkingPaperSeries
Y?ld?zAkkaya,LeaBitter,ClausBrand,LuísFonseca
AstatisticalapproachtoidentifyingECBmonetarypolicy
No2994
Disclaimer:ThispapershouldnotbereportedasrepresentingtheviewsoftheEuropeanCentralBank(ECB).TheviewsexpressedarethoseoftheauthorsanddonotnecessarilyreflectthoseoftheECB.
ECBWorkingPaperSeriesNo29941
Abstract
Weconstructmonetarypolicyindicatorsfromhigh-frequencyassetpricechanges
followingpolicyannouncements,emphasisingtheconcentrationofassetpricere-sponsesalongspecificdimensionsandtheirleptokurticdistribution.Traditionally,thesedimensionsareidentifiedbyrotatingprincipalcomponentsbasedoneconomicassumptionsthatoverlookinformationinexcesskurtosis.WeemployVarimaxro-tation,leveragingexcesskurtosiswithoutusingeconomicrestrictions.Withinasetofeuro-arearisk-freeassetsVarimaxvalidatespolicynewsalongdimensionsprevi-ouslyderivedfromstructuralidentificationapproachesandrejectsevidenceofmacro-informationshocks.Yet,onceaddingriskyassetsVarimaxidentifiesonlyonerisk-freefactorinmedium-tolong-termyieldsandinsteadpointstoadditionalrisk-shiftfac-tors.
JELcode:E43,E52,E58,C46,G14.
Keywords:Monetarypolicyinstruments,Varimax,fattails,eventstudy,high-frequencyidentification.
ECBWorkingPaperSeriesNo29942
Non-technicalsummary
Inthewakeoftheglobalfinancialcrisis(GFC)andtheeconomicchallengesarisingfromitcentralbankshavedeployednovelpolicytools,impactingassetpricesinwaysdifferentfromthetraditionalshort-terminterestrateinstrument.TheEuropeanCentralBank(ECB)hasemployedvariousstrategiessuchasforwardguidanceoninterestratesandas-setpurchasestolowerlong-terminterestratesandreducefragmentationinthesovereigndebtmarket.Thesemeasureshaveattenuatedriskaversionandeasedfinancingcondi-tionsacrosstheboard.Conversely,asinflationsurgedinthepost-pandemicenvironment,centralbankshavebeguntounwindassetpurchaseprogrammesandtightenedmonetarypolicy,whileatthesametimecontinuingtoguidefinancialmarketexpectationsaboutfuturepolicyaction.Thisapproachhashelpedmanageshort-termpolicyexpectationsbuthasalsoledtosignificantresponsesinlong-termyieldstopolicynews.Thesedevel-opmentshaveshownhowdifferentmonetarypolicyinstrumentscanaffectspecificassetpricesegments,suggestingthatmonetarypolicyoperatesalongmultipledimensions.
Thispaperintroducesanew,agnosticapproachtomeasurethemulti-dimensionaleffectsofmonetarypolicyusinghigh-frequencyassetpricemovementsaroundECBpolicyannouncements.Traditionalmethodsoftensolelyrelyoneconomicassumptions,butourapproachutilisesstatisticalpropertiesofthedatatoidentifydifferentmonetarypolicyfactorswithoutimposingeconomicrestrictions.ThisapproachisnamedVarimaxrotationofprincipalcomponents.
WhenapplyingVarimaxrotationtorisk-freeyields,weidentifythesamepolicyfac-tors(target,path,andQEi.e.quantitativeeasing)asthosefoundinpreviousstudiesandwedonotfindevidenceofmacro-economicinformationnewsinECBpolicyannounce-ments.Thisvalidationshowsthatourmethodcanstatisticallysupporttheconventionalapproachtoidentifyingthesefactors.Yet,addingriskyassetsblursthepreviouslyidenti-fiedseparationbetweentheforwardguidanceandtheQEdimensioninfavourofrisk-shiftfactors.Specifically,whenconsideringyieldsonvarioussovereignbonds,ourapproachconfirmsanadditionalsovereignriskfactors.Includingmoredatafromriskyassets,suchascorporatebondspreads,stockprices,stockmarketvolatility,interestrateuncer-tainty,andtheEUR/USDexchangerate,uncoverfurtherriskdimensionsthatsegmentintosovereignrisk,policyuncertainty,andcorporaterisk.Wesubsequentlymodelthefinancialpropagationofthesefactors.
ECBWorkingPaperSeriesNo29943
Thesampleperiod(spanningfrom2002untillate2023)coversdifferentphasesofmonetarypolicyincludingthequiescentpre-GFCperiod,theGFC,thesovereigndebtcrisis,thesubsequentperiodinwhichpolicyinterestrateswereconstrainedbytheireffectivelowerbound,theCovid-19pandemic,andthepost-pandemicinflationsurge.WefindthatdifferentECBpolicyinstrumentshaveconsistentlyimpactedmedium-to-long-termmaturities,bothbeforeandaftertheGFCandbeforetheformaladoptionofforwardguidancein2013.However,theinfluenceofmonetarypolicyonriskyassets,particularlysovereignbondyieldspreadsandriskappetite,becamemoreprominentsincetheGFC.
OurapproachdepartsfromtraditionalmethodsofusingeconomicassumptionsbyemployingtheVarimaxrotationtechnique.Thismethodleveragesexcesskurtosis,asta-tisticalpropertyindicatingthepresenceofstrongoutliersinthedistributionofassetpriceresponsestopolicyannouncements,andthateachpolicyinstrumentinfluencesadistinctsubsetofassets,thusensuringinterpretabilityandsparsity.Inthiscontext,outliersareafeature,notadrawback.Whilemostmonetarypolicysurprisesaresmallandcentredaroundzero,largeannouncementeffectsareespeciallyinformativeforidentification.
Thesefindingshavesignificantimplicationsforcentralbankpolicydecisions.Bydemonstratingthattraditionalmonetarypolicyfactorscanbeidentifiedusingapurelystatisticalapproach,weprovidearobustmethodforpolicymakerstogaindeeperinsightsintohowpolicyinstrumentsworkandhowtodeploythemmosteffectively.
Additionally,theprominenceofthedetectedrisk-shiftdimensionfortheeuroareaenrichestheunderstandingofhowmonetarypolicyinstrumentswork.Itsuggeststhatcentralbanksneedtoaccountforbroadermarketconditions,beyondtraditionalrisk-freeassets,tofullyunderstandthetransmissionofmonetarypolicy.
Weshowthatcommunication,evenifnotconsideredanexplicitelementofforwardguidance,hasapowerfulandpersistentfinancialimpact.Inaddition,communicationandassetpurchasestransmitstronglyalongariskdimension,achannelthatintheeuroareaappearstodominatea‘central-bankinformation’impact(astrongfinancialimpactfromthecentralbank’spublicassessmentofthestateoftheeconomy),ratherthancommunicationaboutpolicyinstruments.
Inconclusion,ournovelapproachoffersastatisticallyvalidated,comprehensiveviewofthemulti-dimensionaleffectsofmonetarypolicy.Itunderscorestheimportanceofcon-sideringawiderangeofassetpriceresponsesandprovidesvaluableinsightsfordesigningmonetarypolicyandmonetarypolicycommunication.
ECBWorkingPaperSeriesNo29944
1Introduction
Inthewakeoftheglobalfinancialcrisis(GFC),centralbankshavedeployednovelpolicyinstruments,whichhavebeenaffectingassetpricesinwaysdifferentfromthetraditionalshort-terminterestrateinstrument.Intheeuroarea,theEuropeanCentralBank(ECB)useddifferentformsofforwardguidanceoninterestratesandassetpurchasestolowerlong-terminterestratesandattenuatesovereignbondmarketfragmentation,therebyeas-ingfinancingconditionsmorebroadly.Conversely,centralbankstightenedmonetarypolicyinresponsetothepost-pandemicinflationsurge,whileseekingtoguideexpecta-tionsaboutthepaceandextentofincreasesinpolicyrates.Thiscommunicationefforthascontributedtocontainexpectationerrorsaboutthenear-termcourseofmonetarypolicydecisions,butatthesametimealsogeneratedhistoricallylargeadjustmentsinlonger-termyields.Theseexamplesshowthattheimpactofdifferentmonetarypolicyinstrumentscanbeconcentratedinspecificassetpricesegments,pointingtomonetarypolicyworkingalongmultipleanddistinctdimensions.
Measuringsuchmulti-dimensionaleffectsofmonetarypolicyatdifferentmaturityhorizonsfromhigh-frequencyassetpricemovementsaroundpolicyannouncementshasbeenprominentlyproposedby
G¨urkaynaketal.
(2005),followingtheseminalpaperby
Kuttner
(2001)whofocusedonsingle-dimensionmeasuresofmonetarypolicyusingshort
-termyields.
Inthispaperweadoptanovel,agnosticapproachconstructingmulti-dimensionalmon-etarypolicyindicatorsfromhigh-frequencyassetpricechangesfollowingECB’smonetarypolicyannouncements,relyingonstatisticalpropertiesforidentification.Asopposedtotheestablishedliterature,whichreliesonstructuralassumptionsinrotatingprincipalcomponentsincross-asset-priceadjustments,weemployVarimaxrotation.Thisapproachleveragesexcesskurtosisandsparsityintheimpactofpolicyinstrumentswithoutusingeconomicrestrictions.
UsingVarimaxtoidentifydifferentdimensionsofmonetarypolicyisanaturalchoice,giventhatmonetaryannouncementsinducehigh-frequencychangesinassetpriceschar-acterisedbytwokeyfeatures.First,theimpactofmonetarypolicyinstrumentsisusuallyconcentratedwithinspecificdimensions,meaningthatcertainassetsegmentsexperiencemorepronouncedresponsescomparedtoothers.Second,thesehigh-frequencychangesinassetpricesdonotfollowanormaldistribution.AscanbeseeninFigure
1
,inmostcases
ECBWorkingPaperSeriesNo29945
theresponsesaresmall,butininstancesofsignificantmonetarypolicyannouncements,assetpriceresponsesaresubstantial,makingtheirdistributionfat-tailed(see
Jaroci′nski,
2024
).
WeshowthatapplyingVarimaxrotationtorisk-freeyieldsuncoversthesamepolicyfactors–target,path,andQuantitativeeasing(QE)–aspreviouslyidentifiedin
Altavilla
etal.
(2019)andotherstudies,statisticallyvalidatingtheirstructuralidentificationap
-proachwithinthisspecificsetofassets.However,whenaddingfurtherinformationfromriskyassets,likesovereignbonds,corporatebondspreads,stockprices,stockmarketvolatility,interestrateuncertainty,andtheEUR/USDexchangerate,wefinditmorechallengingtodistinguishforwardguidanceandQEdimensionsandinsteadidentifyafurtherrisk-shiftdimensionthatcanbesegmentedintothesovereignriskfactorandinadditionapolicyuncertaintyandacorporateriskfactors.
Oursample,spanningfrom2002untillate2023,capturesdistinctperiodsintheuseofmonetarypolicyinstruments.WeshowthattheECB’smonetarypolicyaffectedmedium-to-longertermmaturitiesintheperiodbeforetheGFCasmuchasitdidsincetheformaladoptionofforwardguidanceasof2013,andalsomeasurablybeforethedeploymentofassetpurchaseprogrammes.Atthesametime,theimpactofmonetarypolicyinstrumentsonriskyassets,inparticularsovereignbondyields,hasgainedprominenceinthecontextoftheGFCanduntilveryrecently.Acrossallinstrumentdimensions,monetarypolicyeffectshavebeensignificantduringtherecentinflationsurge.Duringthisperiod,theECBtightenedmonetarypolicybyraisinginterestratesandgraduallyreducingitsassetportfoliothroughquantitativetightening.
Surprisingly,despitebeingaconspicuousaspectofthedata,excesskurtosishasbeenlargelyoverlookedintheextensiveliteratureidentifyingmonetarypolicyfromassetprices.Theliteratureextensivelyreliesonstructuralassumptionsinrotatingprincipalcom-ponentstoextractthekeydimensionsinsurprisesobservedfromfinancialassetpriceresponsessurroundingmonetarypolicyevents
.1
Principalcomponentsareeffectiveinexplainingmostofthevarianceinassetpricesaroundpolicyannouncements,buttheyareessentiallystatisticalanddonotdirectlyrepresenttheunderlyingstructuraleconomicshocksresponsibleforthevariationsinassetpricesaroundmonetarypolicyannounce-ments.Similartoreduced-formshocksinvectorautoregression(VAR)literature,they
1Seee.g.,
Brandetal.
(2010
);
Altavillaetal.
(2019
);
Mottoandzen
(2022
)fortheeuroarea,orig-
inatingfrom
G¨urkaynaketal.
(2005
)fortheUS.Thesameappliestothesingle-dimensionindicatororiginatingfrom
Kuttner
(2001
).
ECBWorkingPaperSeriesNo29946
Figure1:ValueofthehighfrequencychangeinbasispointsinselectedassetsaroundECBGoverningCouncilmeetings,basedondatafrom
Altavillaetal.
(2019)
.
OIS3M
OIS10Y
Italian10Y?German10Y
15
10
10
525
5
0
0
?50
?5
?10
?10
?25
200220062010201420182022200220062010201420182022200220062010201420182022
Sampleperiod:January2002?October2023.
embodyacombinationofunderlyingstructuralshocks.
Toprovideastructuralinterpretationoftheprincipalcomponents,studiesexploringthemultipledimensionsofmonetarypolicysurpriseshavetypicallyimposedidentifyingrestrictionsbasedoneconomictheoryforrotatingtheprincipalcomponents.However,sinceanyrotationoftheprincipalcomponentsisobservationallyequivalentinthedata,thecredibilityoftheresultsdependsfullyonhowbelievablethea-priorieconomicas-sumptionsare.
ByusingVarimax,weemployastraightforwardstatisticalapproach,capitalisingonexcesskurtosisinassetpricedatatoestimatemonetarypolicyindicatorswithoutrelyingona-priorieconomicassumptions.Asconventionalintheliterature,wefirstextractprincipalcomponentsfromhigh-frequencyassetpricechangestopolicynews.Inasecondstep,insteadofusingstructuralassumptionstorotateprincipalcomponents,weutilisetheVarimaxrotationofprincipalcomponents,atechniqueintroducedby
Kaiser
(1958)
andwidelyappliedacrossvariousacademicfields(withthepaperaccumulatingmorethantenthousandcitationsonGoogleScholar).Wereconstructstructuralfactors,basedoneconomicassumptions,todemonstratethatconventionalmonetarypolicyfactorsbasedoneconomicrestrictionscanemergefromanapproachthatsolelyconsidersthepresenceofsignificanttailsinthereactionsofnumerousassetprices,withoutimposinganyeconomicrestrictionslinkedtospecificpolicyinstruments.
TheVarimaxrotationdistinguishesitselfbyrotatingfactorstoachievesparsityandinterpretability.Ittakesadvantageoftheleptokurticdistributionandconcentrationof
ECBWorkingPaperSeriesNo29947
responsesinspecificassetsegments.Inourcontext,theobjectiveoftherotationistouncovermonetarypolicyfactorswithoutimposingeconomicassumptionsonitsstructure.Itaimstomaximisethevarianceofthesquaredloadingsoffactorsacrossassetswhilemaintainingorthogonality.Thegoalistoattributeeachfactortoassmallasubsetofassetsaspossible,havinginmindtheideaofsparsity,meaningthateachfactorprimarilyinfluencesasubsetofthevariables.Inourspecificsetting,thisobjectiveimpliesthateachpolicyinstrumentaffectsadistinctpartoftheassetpricespectrum.Thehigherkurtosisinthedata,thebetteritenhancestheidentificationofthemostcrucialandinterpretablefactors.
Jaroci′nski
(2024)wasthefirsttoexploitthesecrucialstatisticalfeatures,estimat
-ingindependentandinterpretablestudent-t-distributedfactorsthatdriveassetpricere-sponsestomonetarypolicyannouncementsbytheFederalReserveintheUS.
Jaroci′nski
(2024)showsthathisresultsalignwiththoseobtainedidentifyingfourfactorsbasedon
economicassumptions.Unliketheapproachtakenby
Jaroci′nski
(2024),Varimaxdoes
notdependondistributionalassumptions.Italignsmorecloselywiththetraditionalmethodofobtainingprincipalcomponentsfromalargesetofassetpricesandrotatingthem.However,thereisananalogybetween
Jaroci′nski
(2024)’sapproachandVarimax:
intheabsenceoffattails,asisthecasewhendataarenormallydistributed,thelikelihoodfunctionbecomesflat.Insuchcases,theVarimaxapproachalsolacksstatisticalpowertoidentifyunderlyingrotationoftheprincipalcomponentthatgeneratesthedata.
Themaincontributionofourpaperisthefollowing:First,focussingonhigh-frequencychangesinrisk-freeassetsouralternativestatisticalapproachsubstantiallyconfirmsthepresenceandcharacteristicsofmonetarypolicyindicatorscommonlyidentifiedthroughstructuralmethods.Intheeuroarea,usingabaselinemodelwithsevenrisk-freerates(1-monthto10-year)and10-yearsovereignyieldsfromthefourlargesteconomies,fourfactorsnaturallyemerge.ThesefactorssupportevidenceofECBpolicydimensionsviatheinterestrate‘target’,‘path’forwardguidance,‘QE’,and‘sovereignrisk’(similarto
Altavillaetal.,
2019;
Mottoandzen,
2022
).However,wedonotfindstatisticalsupport
forcentralbankmacro-informationshocksintheeuroarea(identifiedby
Nakamuraand
Steinsson,
2018;
Jaroci′nskiandKaradi,
2022;
Miranda-AgrippinoandRicco,
2021,among
others,fortheUS).Second,expandingthesetofassetpriceswithvariablescapturinguncertaintyaboutmonetarypolicyandriskappetiterevealsevidenceofarisk-shiftfactor(asrecentlydocumentedby
CieslakandSchrimpf,
2019;
CieslakandPang,
2021;
Kroencke
ECBWorkingPaperSeriesNo29948
etal.,
2021;
Baueretal.,
2023
,fortheUS).InthisdatasetVarimaxnolongerproducesevidenceofseparateforward-guidanceandQEdimensions,butonlyonecorrespondingfactorloadingintomedium-tolonger-termrisk-freeyields.Thirdly,weinvestigatethefinancialtransmissionofpolicyindicatorsidentifiedbothwiththebaselineandwitharisk-extendedsetoffactors.Weshowthatthereissignificantevidenceofmonetarypolicytransmittingthroughrisk-takingwhenconsideringtheextendedsetofassetpriceresponsestopolicyannouncements.
Thereminderofthepaperisorganisedasfollows.Section
2
providesanoverviewofthemethodologiesforinferringmulti-dimensionalmonetarypolicyindicatorsbyusinghigh-frequencyassetpricemovements.Section
3
outlinestheconventionalapproachintheliterature,whileSection
4
introducestheVarimaxapproachforidentifyingmonetarypolicyindicators.Section
5
introducesadditionaldimensionsofmonetarypolicysurprisesusingVarimaxbasedonanextendedsetofassets.Section
6
presentsevidenceonthetransmissionofbothbaselineandextendedmonetarypolicydimensionstoselectedassetclassesandthepersistenceoftheireffects.Finally,Section
7
concludes.
2Identifyingmulti-dimensionalindicatorsofmonetarypol-
icysurprisesfromhigh-frequencyassetpricemovements
Inthissection,weprovideanoverviewofthemethodologiesusedtoinferthedimensionsofmonetarypolicysurprisesembeddedinhigh-frequencyassetpricemovementsaroundpolicydecisions.Wecollecthigh-frequencychangesinnseriesofassetpricesaroundT
monetarypolicymeetingsoftheECB’sGoverningCouncilinamatrixX.Westan-T×n
dardiseeachcolumntohavemean0andstandarddeviation1
.2
Wethenuseprincipal
componentstodecomposeXintokfactorsasX=FΛ+η,whereηisaresidual,
T×nT×kk×nT×n
andthecolumnsofFareorthogonaltoeachother,aswellastherowsofΛ.Fornow,thisprocedureispurelystatistical,anditmaximiseshowmucheachprincipalcomponent
2Inthis,wealsodeviatefrompaperssuchas
Altavillaetal.
(2019
)and
Mottoandzen
(2022
)for
theeuroarea,butnotfrom
Swanson
(2021
)fortheUS.Choosingwhethertostandardisetheinputdataaffectstheresults.SincethefirststepistoextractprincipalcomponentsfromX,standardisingallthecolumnsisequivalenttogivingeachcolumnthesameimportance.Notstandardisingimpliesthattheprincipalcomponentsattempttoexplainmoreofthesystematicvariationintheassetswithmorevolatilityintheirunitofmeasure.Thisaspectbecomesmoreimportantonceabroadersetofassetsisconsidered.Forexample,in
Altavillaetal.
(2019
),onlyrisk-freeyieldsareincluded.Inourpaper,wealsoincludesovereignyields,someofwhicharesignificantlymorevolatilethanrisk-freerates(seeTable
2
),aswellasotherassetswhicharemeasuredindifferentscales(e.g.,equityreturnsandequitymarketvolatility).Inthiscase,standardisingthechangesbecomesanaturalapproachalsotoavoidcomparingmovementsinassetswithdifferentunits.
ECBWorkingPaperSeriesNo29949
canexplainofthevarianceofthecolumnsofmatrixX.
Beyondsimplyprovidingastatisticalsummaryoftheassetpriceresponsestomone-tarypolicynews,weareinterestedinrotatingfactorstomaketheminterpretableintermsofthetypeofnewsassociatedtospecificmonetarypolicyinstrumentsorkeydimensionsofmonetarypolicytransmission.Noticethat,foranyorthonormalmatrix(i.e.asquare
matrixwhereallthecolumnshaveunitlengthandareorthogonal)U,wecanrotatek×k
principalcomponentsbyrewritingFΛasFUU′Λ=whilemaintainingthesamefit
andresiduals
.3
MultiplyingtheprincipalcomponentsbyarotationmatrixUisobserva-tionallyequivalenttodoingitwithanyotherorthonormalmatrix,i.e.,thereisaninfinitenumberofdatageneratingprocessesthatareequallycompatiblewiththeobserveddata.Toidentifytheunderlyingstructuraldriversofthedataandtheireconomicinterpreta-tion,weneedtoimposeadditionalassumptionstorestrictor,morecommonly,uniquelyidentifyarotationmatrixthatcharacterisesthestructuraldatageneratingprocess.Thischallengeisanalogoustothedifficultyofidentifyingstructuralshocksfromreducedformresidualsinvectorautoregressions.
3Conventionalapproach:structuralidentificationbased
oneconomicassumptions
Sofar,theliteraturehaslargelymeasureddifferentdimensionsofmonetarypolicybyrelyingonidentifyingassumptionstoexplaincross-assetpricemovementsaroundmone-tarypolicyevents.Themostcommonapproachinthemonetarypolicyfactorsliterature(e.g.,
G¨urkaynaketal.,
2005;
Brandetal.,
2010;
Altavillaetal.,
2019;
Swanson,
2021;
Mottoandzen,
2022
)istofindamatrixUthatimposesidentifyingrestrictionsbased
oneconomictheory.Commonapproachesincludeimposingzerorestrictions(indicatingthatarotatedprincipalcomponent,representingastructuralshock,doesnotaffectaspe-cificasset),signrestrictions(e.g.,indicatingthatcertainassetsmustmoveinaspecificdirectioninresponsetoashock),andapplyingvarianceminimisation(e.g.,ensuringthatfactorsrepresentingtheeffectsofassetpurchaseshavelowvariancebeforetheirofficial 3NotethatifUisorthonormal,thenU?1=U′.Whenextractingprincipalcomponentsfromadataset,thesolutionyieldsasetoforthogonalprincipalcomponentsF,andasetoforthogonalloadings
Λ.However,atmostonlyoneofthesepropertiescanberetainedafterrotation,asexplainedby
Jolliffe
(1995
).Ineconomicterms,thisresultimplieswemustassumethateithertheunderlyingdriversofmonetarypolicysurpriseshaveorthogonalimpactsontheyieldcurve,buttheiractivationiscorrelated,orthattheyareactivatedindependentlybuthavecorrelatedimpactsonfinancialassets.Inthispaper,wehavechosenthelatter,inlinewiththeusualassumptionthatstructuralshocksshouldbeorthogonal.
ECBWorkingPaperSeriesNo299410
introduction).
Weintendtoextractandidentifymulti-dimensionalindicatorsofmonetarypolicysurprisesfortheeuroareabasedonhigh-frequencycross-assetpricemovements.Thereby,theidentificationstrategyfollowseconomicreasoninghowdifferentpolicyinstrumentsaffectspecificassetprices,takingintoconsiderationthespecificroleofsovereignriskin
acurrencyunion,asdiscussedin
Mottoandzen
(2022),
MiraGodinho
(2021),
Wright
(2019)
.
WeusetheEuroAreaMonetaryPolicyDatabase(EA-MPD)of
Altavillaetal.
(2019),
updateduntilOctober2023.Thedatabasecontainsthechangeinacross-sectionofassetpricesaroundECBGoverningCouncilmeetingsinthreewindows:aroundthepressrelease,aroundthepressconference,andafulleventwindowcoveringtheperiodfrombeforethepressreleasetoafterthepressconference.Whileuntil2016theECBwouldannouncenon-standardmeasuresonlyinthepressconference,itisnowacommonpracticetoannouncechangesinforwardguidanceandassetpurchasesalreadyinthepressrelease
.4
Forthisreason,wedepartfromotherpapersintheeuroareamonetarypolicysurprises
literature,suchas
Altavillaetal.
(2019)and
Mottoandzen
(2022),andusethefull
eventwindow.
Weuseabaselinesetofassetscoveringinterestratesfrom1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 溝通與協(xié)調(diào)打造和諧職場環(huán)境
- 生態(tài)建筑引領(lǐng)未來商業(yè)趨勢
- 現(xiàn)代科技在股票市場分析中的應(yīng)用
- 校園餐飲消費大數(shù)據(jù)洞察學(xué)生消費習(xí)慣
- 2024年八年級生物下冊 6.2.1遺傳說課稿 (新版)冀教版
- 2024年八年級物理下冊 8.1認識壓強說課稿 (新版)粵教滬版
- 14《普羅米修斯》(說課稿)2024-2025學(xué)年-統(tǒng)編版語文四年級上冊
- 2024年五年級數(shù)學(xué)下冊 五 分數(shù)除法練習(xí)五說課稿 北師大版
- 2024-2025學(xué)年高中歷史 專題1 中國傳統(tǒng)文化主流思想的演變 3 宋明理學(xué)說課稿 人民版必修3
- 2024-2025學(xué)年八年級物理下冊 第十章 從粒子到宇宙 10.1 認識分子說課稿 (新版)粵教滬版
- 2025年個人合法二手車買賣合同(4篇)
- 2025年山西國際能源集團限公司所屬企業(yè)招聘43人高頻重點提升(共500題)附帶答案詳解
- 青海省海北藏族自治州(2024年-2025年小學(xué)六年級語文)統(tǒng)編版隨堂測試(上學(xué)期)試卷及答案
- 外研版(三起)小學(xué)英語三年級下冊Unit 1 Animal friends Get ready start up 課件
- 江蘇省無錫市2023-2024學(xué)年高三上學(xué)期期終教學(xué)質(zhì)量調(diào)研測試語文試題(解析版)
- 銅礦隱蔽致災(zāi)普查治理工作計劃
- 2024-2030年中國出版社行業(yè)發(fā)展現(xiàn)狀及前景趨勢分析報告
- 外研版七年級上冊英語課文翻譯
- 《民航安全檢查(安檢技能實操)》課件-第一章 民航安全檢查員職業(yè)道德
- 學(xué)校食品安全教育學(xué)習(xí)活動食品安全講座課件
- 綠色建筑項目造價咨詢服務(wù)方案
評論
0/150
提交評論