版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024-2025學(xué)年廣東省中山火炬開發(fā)區(qū)高一(上)期中數(shù)學(xué)試卷一、單選題:本題共8小題,每小題5分,共40分。在每小題給出的選項中,只有一項是符合題目要求的。1.已知集合,,則圖中陰影部分表示的集合為(
)
A. B. C. D.2.已知a,b為非零實數(shù),則“”是“”的(
)A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件3.命題“每一個四邊形的對角線都互相垂直”的否定是(
)A.每一個四邊形的對角線都不互相垂直
B.存在一個四邊形,它的對角線不垂直
C.所有對角線互相垂直的四邊形是平行四邊形
D.存在一個四邊形,它的對角線互相垂直4.已知關(guān)于x的不等式的解集為,其中a,b,c為常數(shù),則不等式的解集是(
)A. B.或
C.或 D.5.下列各組函數(shù)表示同一個函數(shù)的是(
)A.與
B.
C.
D.與6.已知函數(shù),則(
)A.是奇函數(shù) B.定義域為
C.在上單調(diào)遞增 D.值域為7.定義在上的函數(shù)滿足:對,,且,都有成立,且,則不等式的解集為(
)A. B. C. D.8.已知函數(shù)且,若函數(shù)的值域為R,則實數(shù)a的取值范圍是(
)A. B. C. D.二、多選題:本題共3小題,共18分。在每小題給出的選項中,有多項符合題目要求。全部選對的得6分,部分選對的得2分,有選錯的得0分。9.若,,,則下列不等式恒成立的是(
)A. B. C. D.10.已知實數(shù)a,b滿足等式,則下列不可能成立的有(
)A. B. C. D.11.高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號,他和阿基米德、牛頓并列為世界三大數(shù)學(xué)家,用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過x的最大整數(shù),則稱為高斯函數(shù),如,設(shè)函數(shù),則下列說法錯誤的是(
)A.的圖象關(guān)于y軸對稱 B.的最大值為1,沒有最小值
C. D.在R上是增函數(shù)三、填空題:本題共3小題,每小題5分,共15分。12.求值:______.13.若函數(shù)的定義域是,則函數(shù)的定義域是______.14.不等式對恒成立,則a的取值范圍______.四、解答題:本題共5小題,共77分。解答應(yīng)寫出文字說明,證明過程或演算步驟。15.本小題15分
已知集合,在①;②;③這三個條件中任選一個,補(bǔ)充到本題第問的橫線處,求解下列問題.
當(dāng)時,求;
若_____,求實數(shù)a的取值范圍.16.本小題15分
已知,求的解析式;
已知函數(shù),,,用表示、中的較小者,記為,求的解析式.17.本小題15分
已知函數(shù)且其定義域為
判定函數(shù)的奇偶性;
利用單調(diào)性的定義證明:在上單調(diào)遞減;
解不等式18.本小題15分
中國建設(shè)新的芯片工廠的速度處于世界前列,這是朝著提高半導(dǎo)體自給率目標(biāo)邁出的重要一步.根據(jù)國際半導(dǎo)體產(chǎn)業(yè)協(xié)會的數(shù)據(jù),在截至2024年的4年里,中國計劃建設(shè)31家大型半導(dǎo)體工廠.某公司打算在2023年度建設(shè)某型芯片的生產(chǎn)線,建設(shè)該生產(chǎn)線的成本為300萬元,若該型芯片生產(chǎn)線在2024年產(chǎn)出x萬枚芯片,還需要投入物料及人工等成本單位:萬元,已知當(dāng)時,;當(dāng)時,;當(dāng)時,,已知生產(chǎn)的該型芯片都能以每枚80元的價格售出.
已知2024年該型芯片生產(chǎn)線的利潤為單位:萬元,試求出的函數(shù)解析式.
請你為該型芯片的生產(chǎn)線的產(chǎn)量做一個計劃,使得2024年該型芯片的生產(chǎn)線所獲利潤最大,并預(yù)測最大利潤.19.本小題17分
設(shè)函數(shù)的定義域為D,集合,若存在非零實數(shù)t使得對任意都有,且,則稱為M上的增長函數(shù).
已知函數(shù),判斷是否為區(qū)間上的增長函數(shù),并說明理由;
已知函數(shù),且是區(qū)間上的增長函數(shù),求正整數(shù)n的最小值;
如果是定義域為R的奇函數(shù),當(dāng)時,,且為R上的增長函數(shù),求實數(shù)a的取值范圍.
答案和解析1.【答案】A
【解析】解:已知集合,,
則,,
由圖知道陰影部分表示中把去掉后剩下元素組成的集合,
即圖中陰影部分表示的集合為
故選:
先求出,由圖知道陰影部分表示A中把B中去掉后剩下元素組成的集合,寫出結(jié)果即可.
本題考查了交集和補(bǔ)集的計算,屬于基礎(chǔ)題.2.【答案】D
【解析】【分析】本題主要考查了不等式的性質(zhì),考查了充分條件和必要條件的定義,屬于基礎(chǔ)題.
根據(jù)充分條件和必要條件的定義即可判斷.【解答】
解:當(dāng)時,,所以由得不出,
若,則,若,則,即,
所以由得不出,
所以“”是“”的既不充分也不必要條件.
故選:3.【答案】B
【解析】解:因為“每一個四邊形的對角線都互相垂直”是全稱命題,
所以其否定為:存在一個四邊形,它的對角線不垂直,故B正確,ACD錯誤.
故選:
根據(jù)全稱命題的否定分析判斷即可.
本題主要考查命題的否定,屬于基礎(chǔ)題.4.【答案】A
【解析】解:因為關(guān)于x的一元二次不等式的解集為,
則,7是一元二次方程的兩根,且,
所以,解得,
則不等式化為,
又因為,
所以不等式可化為,
解得,
即不等式的解集是
故選:
先根據(jù)一元二次不等式的解集得出再化簡得出,即可得出不等式的解集.
本題主要考查了一元二次不等式的解法,考查了韋達(dá)定理的應(yīng)用,屬于基礎(chǔ)題.5.【答案】C
【解析】解:A:的定義域為R,的定義域,不是同一函數(shù);
B:的定義域為,的定義域為或,不是同一函數(shù);
C:的定義域,的定義域為相同,對應(yīng)關(guān)系也相同,是同一函數(shù);
D:與的對應(yīng)關(guān)系不同,不是同一函數(shù).
故選:
根據(jù)兩個函數(shù)的定義域相同,對應(yīng)關(guān)系也相同,判斷它們是同一函數(shù)即可.
本題考查了判斷兩個函數(shù)是否為同一函數(shù)的問題,是基礎(chǔ)題目.6.【答案】C
【解析】解:因為,,所以是偶函數(shù),故A錯誤;
的定義域為R,故B錯誤;任取,,且,
,
因為,所以,,
所以,所以,
所以在上單調(diào)遞增,故C正確;
因為,當(dāng)且僅當(dāng),即時取等,所以的值域為故D錯誤.
故選:
化簡,由奇偶函數(shù)的定義可判斷A;求出的定義域可判斷B;由定義法證明的單調(diào)性可判斷C;由基本不等式可判斷
本題主要考查了函數(shù)奇偶性及單調(diào)性的判斷,還考查了函數(shù)最值的求解,屬于中檔題.7.【答案】A
【解析】解:根據(jù)題意,設(shè),
若對,,且,都有成立,即,
則函數(shù)在上為增函數(shù),
又由,則,
則不等式,則有,即不等式的解集為
故選:
根據(jù)題意,設(shè),分析的單調(diào)性,以及,由此可得不等式等價于,結(jié)合單調(diào)性分析可得答案.
本題考查函數(shù)單調(diào)性的性質(zhì)和應(yīng)用,涉及不等式的解法,屬于中檔題.8.【答案】B
【解析】解:,
的圖象是開口向下的拋物線的一部分,
且拋物線的對稱軸方程為
要使函數(shù)的值域為R,則函數(shù)應(yīng)是單調(diào)增函數(shù),
且時的函數(shù)值應(yīng)小于等于3,則,解得
實數(shù)a的取值范圍是
故選:
由題意畫出圖形,數(shù)形結(jié)合可得關(guān)于a的不等式組,求解得答案.
本題考查復(fù)合函數(shù)的值域及其求法,考查分段函數(shù)的應(yīng)用,是中檔題.9.【答案】BD
【解析】【分析】
本題主要考查利用基本不等式求最值,屬于基礎(chǔ)題.
根據(jù)基本不等式判斷ABD,舉反例可判斷
【解答】
解:因為,,,
又,則,當(dāng)且僅當(dāng)時取等號,故A錯誤;
因為,當(dāng)且僅當(dāng)時取等號,故B正確;
令,則不成立,故C錯誤;
因為,當(dāng)且僅當(dāng)時取等號,故D正確.
故選10.【答案】CD
【解析】解:同一坐標(biāo)系中作出函數(shù)和的圖象,如圖所示:
設(shè),,
由圖可知:當(dāng)時,;當(dāng)時,;當(dāng)時,
故選:
根據(jù)題意,畫出函數(shù)和的圖象,結(jié)合圖象可得a,b的大小關(guān)系.
本題主要考查指數(shù)函數(shù)的圖象與性質(zhì)、不等式的性質(zhì)等知識,考查了計算能力、邏輯推理能力,屬于基礎(chǔ)題.11.【答案】ABD
【解析】解:,
畫出的圖象如圖所示:
可以看出此函數(shù)不是偶函數(shù),不關(guān)于y軸對稱,故選項A錯誤;
無最大值,有最小值0,故選項B錯誤;
,
故,
,
,
,故,故選項C正確;
由圖象可知在R上不是增函數(shù),故選項D錯誤.
故選:
根據(jù)的定義,結(jié)合的解析式,作出函數(shù)圖象,即可結(jié)合選項逐一進(jìn)行判斷即可.
本題主要考查分段及其應(yīng)用,考查運(yùn)算求解能力,屬于中檔題.12.【答案】
【解析】解:
故答案為:
根據(jù)根式、分?jǐn)?shù)指數(shù)冪運(yùn)算、零指數(shù)冪運(yùn)算得出結(jié)果.
本題主要考查了有理數(shù)指數(shù)冪的運(yùn)算性質(zhì),屬于基礎(chǔ)題.13.【答案】
【解析】解:依題意,,解得,
故答案為:
根據(jù)題意建立關(guān)于x的不等式組,解出即可.
本題考查函數(shù)定義域的求解,考查運(yùn)算求解能力,屬于基礎(chǔ)題.14.【答案】
【解析】解:當(dāng)時,不等式為,恒成立;
當(dāng),即時,不等式,可轉(zhuǎn)化為,
設(shè),
所以,當(dāng)且僅當(dāng),即時,等號成立,
所以,
綜上所述,a的取值范圍為
故答案為:
當(dāng)時,不等式恒成立,當(dāng)時,分離參數(shù)可得,利用基本不等式求最值,可得參數(shù)范圍.
本題考查了轉(zhuǎn)化思想、分類討論思想及基本不等式的應(yīng)用,屬于中檔題.15.【答案】解:當(dāng)時,,
所以,所以或;
若①成立,則當(dāng)且僅當(dāng)A是B的子集,若②成立,則當(dāng)且僅當(dāng)A是B的子集,
所以條件①與②等價,
若條件①或②成立,
此時若A是空集,則,解得,
若A不是空集,即,且A是B的子集,則,解得,所以,
從而無論條件①還是②都有或;
若條件③成立,
若A是空集,則,解得,
若A不是空集,即,且A是B的補(bǔ)集的子集,而或,
則或,解得或,
所以或,
從而若條件③成立,則或,
綜上所述,無論條件①或②,a的范圍為或;
若條件③成立,則或
【解析】解分式不等式化簡集合B,由交集、補(bǔ)集的概念即可得解;
由題意條件①與②都等價于A是B的子集,條件③等價于A是B的補(bǔ)集的子集,只需分集合A是否是空集,列不等式進(jìn)行討論即可求解.
本題主要考查了集合的交并補(bǔ)的運(yùn)算,還考查了集合包含關(guān)系的應(yīng)用,屬于中檔題.16.【答案】解:設(shè),則,
所以,,
所以,其中,
則;
由,即,即,解得,
由,即,即,解得或,
所以
【解析】令,則,可得出,,由此可得出的表達(dá)式,由此可得出函數(shù)的解析式;
分別解不等式、,結(jié)合可得出函數(shù)的解析式.
本題考查了用換元法求函數(shù)的解析式及一元二次不等式的解法,屬于基礎(chǔ)題.17.【答案】解:為奇函數(shù),證明如下:
因為,
所以為奇函數(shù);
證明:任取,
所以,,,,
則,
所以,
故在上單調(diào)遞減;
可轉(zhuǎn)化為,
所以,解得,
故m的范圍為
【解析】檢驗與的關(guān)系即可判斷;
任取,然后利用作差法比較與的大小即可判斷;
結(jié)合函數(shù)的單調(diào)性及奇偶性即可求解不等式.
本題主要考查了函數(shù)的單調(diào)性及奇偶性的判斷,還考查了函數(shù)的單調(diào)性及奇偶性在不等式求解中的應(yīng)用,屬于中檔題.18.【答案】解:由題意可得,,
所以,
即;
當(dāng)時,,
當(dāng)時,,對稱軸,,
當(dāng)時,由基本不等式知,
當(dāng)且僅當(dāng),即時等號成立,故,
綜上,當(dāng)2024年該型芯片產(chǎn)量為40萬枚時利潤最大,最大利潤為220萬元.
【解析】根據(jù)利潤等于售價減成本可求利潤的表達(dá)式;
根據(jù)的表達(dá)式分別求出每段函數(shù)的最大值即可.
本題考查了函數(shù)模型的實際應(yīng)用,屬于中檔題.19.【答案】解:是,理由如下:
由題意可得:函數(shù)的定義域為R,
對,則,
可得,即,
故為區(qū)間上的增長函數(shù).
函數(shù)的定義域為R,
對,則,
若是區(qū)間上的增長函數(shù),則,即,
可得對恒成立,可得,解得,
故正整數(shù)n的最小值為
由題意可得:當(dāng)時,則,
故,
若為R上的增
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度測量儀器進(jìn)出口貿(mào)易合同范本4篇
- 2025年度拆除工程現(xiàn)場管理及安全培訓(xùn)合同4篇
- 2025年度數(shù)據(jù)中心設(shè)備投放與運(yùn)維管理合同
- 二零二五年度倉儲物流搬運(yùn)工雇傭責(zé)任免除合同
- 二零二五年度非全日制研究生定向培養(yǎng)與就業(yè)保障及職業(yè)培訓(xùn)合同
- 二零二五年度股東借款給公司及合同履行監(jiān)督協(xié)議
- 二零二五年度企業(yè)員工禮儀規(guī)范執(zhí)行合同
- 2025年度游戲產(chǎn)品銷售折扣與虛擬貨幣交易合同
- 南京林業(yè)大學(xué)《材料加工成形制備技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 漯河職業(yè)技術(shù)學(xué)院《材料成型技術(shù)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年河北供水有限責(zé)任公司招聘筆試參考題庫含答案解析
- Unit3 Sports and fitness Discovering Useful Structures 說課稿-2024-2025學(xué)年高中英語人教版(2019)必修第一冊
- 農(nóng)發(fā)行案防知識培訓(xùn)課件
- 社區(qū)醫(yī)療抗菌藥物分級管理方案
- NB/T 11536-2024煤礦帶壓開采底板井下注漿加固改造技術(shù)規(guī)范
- 2024年九年級上德育工作總結(jié)
- 中文版gcs electrospeed ii manual apri rev8v00印刷稿修改版
- 新生兒預(yù)防接種護(hù)理質(zhì)量考核標(biāo)準(zhǔn)
- 除氧器出水溶解氧不合格的原因有哪些
- 沖擊式機(jī)組水輪機(jī)安裝概述與流程
- 畢業(yè)論文-水利水電工程質(zhì)量管理
評論
0/150
提交評論