廣東省廣州仲元中學(xué)2023-2024學(xué)年高三第二次調(diào)研統(tǒng)一測(cè)試數(shù)學(xué)試題_第1頁(yè)
廣東省廣州仲元中學(xué)2023-2024學(xué)年高三第二次調(diào)研統(tǒng)一測(cè)試數(shù)學(xué)試題_第2頁(yè)
廣東省廣州仲元中學(xué)2023-2024學(xué)年高三第二次調(diào)研統(tǒng)一測(cè)試數(shù)學(xué)試題_第3頁(yè)
廣東省廣州仲元中學(xué)2023-2024學(xué)年高三第二次調(diào)研統(tǒng)一測(cè)試數(shù)學(xué)試題_第4頁(yè)
廣東省廣州仲元中學(xué)2023-2024學(xué)年高三第二次調(diào)研統(tǒng)一測(cè)試數(shù)學(xué)試題_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣東省廣州仲元中學(xué)2023-2024學(xué)年高三第二次調(diào)研統(tǒng)一測(cè)試數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知正方體的棱長(zhǎng)為,,,分別是棱,,的中點(diǎn),給出下列四個(gè)命題:①;②直線與直線所成角為;③過(guò),,三點(diǎn)的平面截該正方體所得的截面為六邊形;④三棱錐的體積為.其中,正確命題的個(gè)數(shù)為()A. B. C. D.2.已知是等差數(shù)列的前項(xiàng)和,若,,則()A.5 B.10 C.15 D.203.已知復(fù)數(shù)是正實(shí)數(shù),則實(shí)數(shù)的值為()A. B. C. D.4.寧波古圣王陽(yáng)明的《傳習(xí)錄》專門(mén)講過(guò)易經(jīng)八卦圖,下圖是易經(jīng)八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(“—”表示一根陽(yáng)線,“——”表示一根陰線).從八卦中任取兩卦,這兩卦的六根線中恰有四根陰線的概率為()A. B. C. D.5.執(zhí)行如圖所示的程序框圖,則輸出的值為()A. B. C. D.6.已知集合A={x|x<1},B={x|},則A. B.C. D.7.第24屆冬奧會(huì)將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運(yùn)會(huì)會(huì)旗中五環(huán)所占面積與單獨(dú)五個(gè)環(huán)面積之和的比值P,某學(xué)生做如圖所示的模擬實(shí)驗(yàn):通過(guò)計(jì)算機(jī)模擬在長(zhǎng)為10,寬為6的長(zhǎng)方形奧運(yùn)會(huì)旗內(nèi)隨機(jī)取N個(gè)點(diǎn),經(jīng)統(tǒng)計(jì)落入五環(huán)內(nèi)部及其邊界上的點(diǎn)數(shù)為n個(gè),已知圓環(huán)半徑為1,則比值P的近似值為()A. B. C. D.8.已知函數(shù),若函數(shù)的極大值點(diǎn)從小到大依次記為,并記相應(yīng)的極大值為,則的值為()A. B. C. D.9.在中,,,,則在方向上的投影是()A.4 B.3 C.-4 D.-310.已知復(fù)數(shù),則()A. B. C. D.11.在原點(diǎn)附近的部分圖象大概是()A. B.C. D.12.已知橢圓:的左、右焦點(diǎn)分別為,,點(diǎn),在橢圓上,其中,,若,,則橢圓的離心率的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的兩條漸近線方程為,若頂點(diǎn)到漸近線的距離為1,則雙曲線方程為.14.四面體中,底面,,,則四面體的外接球的表面積為_(kāi)_____15.設(shè)函數(shù)滿足,且當(dāng)時(shí),又函數(shù),則函數(shù)在上的零點(diǎn)個(gè)數(shù)為_(kāi)__________.16.拋物線上到其焦點(diǎn)的距離為的點(diǎn)的個(gè)數(shù)為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在三棱錐中,是邊長(zhǎng)為的正三角形,平面平面,,M、N分別為、的中點(diǎn).?(1)證明:;(2)求三棱錐的體積.18.(12分)在中,內(nèi)角,,所對(duì)的邊分別是,,,,,.(Ⅰ)求的值;(Ⅱ)求的值.19.(12分)已知拋物線的焦點(diǎn)為,點(diǎn),點(diǎn)為拋物線上的動(dòng)點(diǎn).(1)若的最小值為,求實(shí)數(shù)的值;(2)設(shè)線段的中點(diǎn)為,其中為坐標(biāo)原點(diǎn),若,求的面積.20.(12分)甲、乙兩班各派三名同學(xué)參加知識(shí)競(jìng)賽,每人回答一個(gè)問(wèn)題,答對(duì)得10分,答錯(cuò)得0分,假設(shè)甲班三名同學(xué)答對(duì)的概率都是,乙班三名同學(xué)答對(duì)的概率分別是,,,且這六名同學(xué)答題正確與否相互之間沒(méi)有影響.(1)記“甲、乙兩班總得分之和是60分”為事件,求事件發(fā)生的概率;(2)用表示甲班總得分,求隨機(jī)變量的概率分布和數(shù)學(xué)期望.21.(12分)如圖,在等腰梯形中,AD∥BC,,,,,分別為,,的中點(diǎn),以為折痕將折起,使點(diǎn)到達(dá)點(diǎn)位置(平面).(1)若為直線上任意一點(diǎn),證明:MH∥平面;(2)若直線與直線所成角為,求二面角的余弦值.22.(10分)設(shè)不等式的解集為M,.(1)證明:;(2)比較與的大小,并說(shuō)明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

畫(huà)出幾何體的圖形,然后轉(zhuǎn)化判斷四個(gè)命題的真假即可.【詳解】如圖;連接相關(guān)點(diǎn)的線段,為的中點(diǎn),連接,因?yàn)槭侵悬c(diǎn),可知,,可知平面,即可證明,所以①正確;直線與直線所成角就是直線與直線所成角為;正確;過(guò),,三點(diǎn)的平面截該正方體所得的截面為五邊形;如圖:是五邊形.所以③不正確;如圖:三棱錐的體積為:由條件易知F是GM中點(diǎn),所以,而,.所以三棱錐的體積為,④正確;故選:.【點(diǎn)睛】本題考查命題的真假的判斷與應(yīng)用,涉及空間幾何體的體積,直線與平面的位置關(guān)系的應(yīng)用,平面的基本性質(zhì),是中檔題.2、C【解析】

利用等差通項(xiàng),設(shè)出和,然后,直接求解即可【詳解】令,則,,∴,,∴.【點(diǎn)睛】本題考查等差數(shù)列的求和問(wèn)題,屬于基礎(chǔ)題3、C【解析】

將復(fù)數(shù)化成標(biāo)準(zhǔn)形式,由題意可得實(shí)部大于零,虛部等于零,即可得到答案.【詳解】因?yàn)闉檎龑?shí)數(shù),所以且,解得.故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的基本定義,屬基礎(chǔ)題.4、B【解析】

根據(jù)古典概型的概率求法,先得到從八卦中任取兩卦基本事件的總數(shù),再找出這兩卦的六根線中恰有四根陰線的基本事件數(shù),代入公式求解.【詳解】從八卦中任取兩卦基本事件的總數(shù)種,這兩卦的六根線中恰有四根陰線的基本事件數(shù)有6種,分別是(巽,坤),(兌,坤),(離,坤),(震,艮),(震,坎),(坎,艮),所以這兩卦的六根線中恰有四根陰線的概率是.故選:B【點(diǎn)睛】本題主要考查古典概型的概率,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.5、B【解析】

列出每一次循環(huán),直到計(jì)數(shù)變量滿足退出循環(huán).【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,退出循環(huán),輸出的為.故選:B.【點(diǎn)睛】本題考查由程序框圖求輸出的結(jié)果,要注意在哪一步退出循環(huán),是一道容易題.6、A【解析】∵集合∴∵集合∴,故選A7、B【解析】

根據(jù)比例關(guān)系求得會(huì)旗中五環(huán)所占面積,再計(jì)算比值.【詳解】設(shè)會(huì)旗中五環(huán)所占面積為,由于,所以,故可得.故選:B.【點(diǎn)睛】本題考查面積型幾何概型的問(wèn)題求解,屬基礎(chǔ)題.8、C【解析】

對(duì)此分段函數(shù)的第一部分進(jìn)行求導(dǎo)分析可知,當(dāng)時(shí)有極大值,而后一部分是前一部分的定義域的循環(huán),而值域則是每一次前面兩個(gè)單位長(zhǎng)度定義域的值域的2倍,故此得到極大值點(diǎn)的通項(xiàng)公式,且相應(yīng)極大值,分組求和即得【詳解】當(dāng)時(shí),,顯然當(dāng)時(shí)有,,∴經(jīng)單調(diào)性分析知為的第一個(gè)極值點(diǎn)又∵時(shí),∴,,,…,均為其極值點(diǎn)∵函數(shù)不能在端點(diǎn)處取得極值∴,,∴對(duì)應(yīng)極值,,∴故選:C【點(diǎn)睛】本題考查基本函數(shù)極值的求解,從函數(shù)表達(dá)式中抽離出相應(yīng)的等差數(shù)列和等比數(shù)列,最后分組求和,要求學(xué)生對(duì)數(shù)列和函數(shù)的熟悉程度高,為中檔題9、D【解析】分析:根據(jù)平面向量的數(shù)量積可得,再結(jié)合圖形求出與方向上的投影即可.詳解:如圖所示:,,,又,,在方向上的投影是:,故選D.點(diǎn)睛:本題考查了平面向量的數(shù)量積以及投影的應(yīng)用問(wèn)題,也考查了數(shù)形結(jié)合思想的應(yīng)用問(wèn)題.10、B【解析】

利用復(fù)數(shù)除法、加法運(yùn)算,化簡(jiǎn)求得,再求得【詳解】,故.故選:B【點(diǎn)睛】本小題主要考查復(fù)數(shù)的除法運(yùn)算、加法運(yùn)算,考查復(fù)數(shù)的模,屬于基礎(chǔ)題.11、A【解析】

分析函數(shù)的奇偶性,以及該函數(shù)在區(qū)間上的函數(shù)值符號(hào),結(jié)合排除法可得出正確選項(xiàng).【詳解】令,可得,即函數(shù)的定義域?yàn)椋x域關(guān)于原點(diǎn)對(duì)稱,,則函數(shù)為奇函數(shù),排除C、D選項(xiàng);當(dāng)時(shí),,,則,排除B選項(xiàng).故選:A.【點(diǎn)睛】本題考查利用函數(shù)解析式選擇函數(shù)圖象,一般要分析函數(shù)的定義域、奇偶性、單調(diào)性、零點(diǎn)以及函數(shù)值符號(hào),考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.12、C【解析】

根據(jù)可得四邊形為矩形,設(shè),,根據(jù)橢圓的定義以及勾股定理可得,再分析的取值范圍,進(jìn)而求得再求離心率的范圍即可.【詳解】設(shè),,由,,知,因?yàn)?在橢圓上,,所以四邊形為矩形,;由,可得,由橢圓的定義可得,①,平方相減可得②,由①②得;令,令,所以,即,所以,所以,所以,解得.故選:C【點(diǎn)睛】本題主要考查了橢圓的定義運(yùn)用以及構(gòu)造齊次式求橢圓的離心率的問(wèn)題,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由已知,即,取雙曲線頂點(diǎn)及漸近線,則頂點(diǎn)到該漸近線的距離為,由題可知,所以,則所求雙曲線方程為.14、【解析】

由題意畫(huà)出圖形,補(bǔ)形為長(zhǎng)方體,求其對(duì)角線長(zhǎng),可得四面體外接球的半徑,則表面積可求.【詳解】解:如圖,在四面體中,底面,,,可得,補(bǔ)形為長(zhǎng)方體,則過(guò)一個(gè)頂點(diǎn)的三條棱長(zhǎng)分別為1,1,,則長(zhǎng)方體的對(duì)角線長(zhǎng)為,則三棱錐的外接球的半徑為1.其表面積為.故答案為:.【點(diǎn)睛】本題考查多面體外接球表面積的求法,補(bǔ)形是關(guān)鍵,屬于中檔題.15、1【解析】

判斷函數(shù)為偶函數(shù),周期為2,判斷為偶函數(shù),計(jì)算,,畫(huà)出函數(shù)圖像,根據(jù)圖像到答案.【詳解】知,函數(shù)為偶函數(shù),,函數(shù)關(guān)于對(duì)稱。,故函數(shù)為周期為2的周期函數(shù),且。為偶函數(shù),,,當(dāng)時(shí),,,函數(shù)先增后減。當(dāng)時(shí),,,函數(shù)先增后減。在同一坐標(biāo)系下作出兩函數(shù)在上的圖像,發(fā)現(xiàn)在內(nèi)圖像共有1個(gè)公共點(diǎn),則函數(shù)在上的零點(diǎn)個(gè)數(shù)為1.故答案為:.【點(diǎn)睛】本題考查了函數(shù)零點(diǎn)問(wèn)題,確定函數(shù)的奇偶性,對(duì)稱性,周期性,畫(huà)出函數(shù)圖像是解題的關(guān)鍵.16、【解析】

設(shè)拋物線上任意一點(diǎn)的坐標(biāo)為,根據(jù)拋物線的定義求得,并求出對(duì)應(yīng)的,即可得出結(jié)果.【詳解】設(shè)拋物線上任意一點(diǎn)的坐標(biāo)為,拋物線的準(zhǔn)線方程為,由拋物線的定義得,解得,此時(shí).因此,拋物線上到其焦點(diǎn)的距離為的點(diǎn)的個(gè)數(shù)為.故答案為:.【點(diǎn)睛】本題考查利用拋物線的定義求點(diǎn)的坐標(biāo),考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2).【解析】

(1)取中點(diǎn),連接,,證明平面,由線面垂直的性質(zhì)可得;(2)由,即可求得三棱錐的體積.【詳解】解:(1)證明:取中點(diǎn)D,連接,.因?yàn)?,,所以且,因?yàn)?,平面,平面,所以平?又平面,所以;(2)解:因?yàn)槠矫?,平面,所以平面平面,過(guò)N作于E,則平面,因?yàn)槠矫嫫矫?,,平面平面,平面,所以平面,又因?yàn)槠矫妫?,由于,所以所以,所?【點(diǎn)睛】本題考查線面垂直,考查三棱錐體積的計(jì)算,解題的關(guān)鍵是掌握線面垂直的判定與性質(zhì),屬于中檔題.18、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)根據(jù)正弦定理先求得邊c,然后由余弦定理可求得邊b;(Ⅱ)結(jié)合二倍角公式及和差公式,即可求得本題答案.【詳解】(Ⅰ)因?yàn)?,由正弦定理可得,,又,所以,所以根?jù)余弦定理得,,解得,;(Ⅱ)因?yàn)椋?,,,則.【點(diǎn)睛】本題主要考查利用正余弦定理解三角形,以及利用二倍角公式及和差公式求值,屬基礎(chǔ)題.19、(1)的值為或.(2)【解析】

(1)分類討論,當(dāng)時(shí),線段與拋物線沒(méi)有公共點(diǎn),設(shè)點(diǎn)在拋物線準(zhǔn)線上的射影為,當(dāng)三點(diǎn)共線時(shí),能取得最小值,利用拋物線的焦半徑公式即可求解;當(dāng)時(shí),線段與拋物線有公共點(diǎn),利用兩點(diǎn)間的距離公式即可求解.(2)由題意可得軸且設(shè),則,代入拋物線方程求出,再利用三角形的面積公式即可求解.【詳解】由題,,若線段與拋物線沒(méi)有公共點(diǎn),即時(shí),設(shè)點(diǎn)在拋物線準(zhǔn)線上的射影為,則三點(diǎn)共線時(shí),的最小值為,此時(shí)若線段與拋物線有公共點(diǎn),即時(shí),則三點(diǎn)共線時(shí),的最小值為:,此時(shí)綜上,實(shí)數(shù)的值為或.因?yàn)?,所以軸且設(shè),則,代入拋物線的方程解得于是,所以【點(diǎn)睛】本題考查了拋物線的焦半徑公式、直線與拋物線的位置關(guān)系中的面積問(wèn)題,屬于中檔題.20、(1)(2)分布列見(jiàn)解析,期望為20【解析】

利用相互獨(dú)立事件概率公式求解即可;由題意知,隨機(jī)變量可能的取值為0,10,20,30,分別求出對(duì)應(yīng)的概率,列出分布列并代入數(shù)學(xué)期望公式求解即可.【詳解】(1)由相互獨(dú)立事件概率公式可得,(2)由題意知,隨機(jī)變量可能的取值為0,10,20,30.,,,,所以,的概率分布列為0102030所以數(shù)學(xué)期望.【點(diǎn)睛】本題考查相互獨(dú)立事件概率公式和離散型隨機(jī)變量的分布列及其數(shù)學(xué)期望;考查運(yùn)算求解能力;確定隨機(jī)變量可能的取值,求出對(duì)應(yīng)的概率是求解本題的關(guān)鍵;屬于中檔題、??碱}型.21、(1)見(jiàn)解析(2)【解析】

(1)根據(jù)中位線證明平面平面,即可證明MH∥平面;(2)以,,為,,軸建立空間直角坐標(biāo)系,找到點(diǎn)的坐標(biāo)代入公式即可計(jì)算二面角的余弦值.【詳解】(1)證明:連接,∵,,分別為,,的中點(diǎn),∴,又∵平面,平面,∴平面,同理,平面,∵平面,平面,,∴平面平面,∵平面,∴平面.(2)連接,在和中,由余弦定理可得,,由與互補(bǔ),,,可解得,于是,∴,,∵,直線與直線所成角為,∴,又,∴,即,∴平面,∴平面平面,∵為中點(diǎn),,∴平面,如圖所示,分別以,,為,,軸建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量為,∴,即.令,則,,可得平面的一個(gè)法向量為.又平面的一個(gè)法向量為,∴,∴二面角的余弦值為.【點(diǎn)睛】此題考查線面平行,建系通過(guò)坐

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論