版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省六校聯(lián)盟(深圳實驗,廣州二中,珠海一中,惠州一中,東莞中學2024屆高三下學期校內第一次質量檢測試題數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列的前項和為,若,,則數(shù)列的公差為()A. B. C. D.2.已知傾斜角為的直線與直線垂直,則()A. B. C. D.3.已知集合,,,則的子集共有()A.個 B.個 C.個 D.個4.已知函數(shù),,若成立,則的最小值是()A. B. C. D.5.已知等差數(shù)列的前項和為,若,則等差數(shù)列公差()A.2 B. C.3 D.46.如圖所示,網(wǎng)絡紙上小正方形的邊長為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.87.陀螺是中國民間最早的娛樂工具,也稱陀羅.如圖,網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某個陀螺的三視圖,則該陀螺的表面積為()A. B.C. D.8.已知雙曲線的一條漸近線經(jīng)過圓的圓心,則雙曲線的離心率為()A. B. C. D.29.給出個數(shù),,,,,,其規(guī)律是:第個數(shù)是,第個數(shù)比第個數(shù)大,第個數(shù)比第個數(shù)大,第個數(shù)比第個數(shù)大,以此類推,要計算這個數(shù)的和.現(xiàn)已給出了該問題算法的程序框圖如圖,請在圖中判斷框中的①處和執(zhí)行框中的②處填上合適的語句,使之能完成該題算法功能()A.; B.;C.; D.;10.已知正方體的體積為,點,分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.11.某學校組織學生參加英語測試,成績的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為,若低于60分的人數(shù)是18人,則該班的學生人數(shù)是()A.45 B.50 C.55 D.6012.《算數(shù)書》竹簡于上世紀八十年代在湖北省江陵縣張家山出土,這是我國現(xiàn)存最早的有系統(tǒng)的數(shù)學典籍.其中記載有求“囷蓋”的術:“置如其周,令相承也.又以高乘之,三十六成一”.該術相當于給出了由圓錐的底面周長與高,計算其體積的近似公式.它實際上是將圓錐體積公式中的圓周率近似取為3.那么近似公式相當于將圓錐體積公式中的圓周率近似取為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.根據(jù)記載,最早發(fā)現(xiàn)勾股定理的人應是我國西周時期的數(shù)學家商高,商高曾經(jīng)和周公討論過“勾3股4弦5”的問題.現(xiàn)有滿足“勾3股4弦5”,其中“股”,為“弦”上一點(不含端點),且滿足勾股定理,則______.14.設函數(shù),若對于任意的,∈[2,,≠,不等式恒成立,則實數(shù)a的取值范圍是.15.記為數(shù)列的前項和,若,則__________.16.在中,已知,則的最小值是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)△ABC的內角的對邊分別為,已知△ABC的面積為(1)求;(2)若求△ABC的周長.18.(12分)已知函數(shù).(1)當時,不等式恒成立,求的最小值;(2)設數(shù)列,其前項和為,證明:.19.(12分)設函數(shù)().(1)討論函數(shù)的單調性;(2)若關于x的方程有唯一的實數(shù)解,求a的取值范圍.20.(12分)如圖,在長方體中,,為的中點,為的中點,為線段上一點,且滿足,為的中點.(1)求證:平面;(2)求二面角的余弦值.21.(12分)已知.(1)求不等式的解集;(2)記的最小值為,且正實數(shù)滿足.證明:.22.(10分)設函數(shù),,其中,為正實數(shù).(1)若的圖象總在函數(shù)的圖象的下方,求實數(shù)的取值范圍;(2)設,證明:對任意,都有.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)等差數(shù)列公式直接計算得到答案.【詳解】依題意,,故,故,故,故選:D.【點睛】本題考查了等差數(shù)列的計算,意在考查學生的計算能力.2、D【解析】
傾斜角為的直線與直線垂直,利用相互垂直的直線斜率之間的關系,同角三角函數(shù)基本關系式即可得出結果.【詳解】解:因為直線與直線垂直,所以,.又為直線傾斜角,解得.故選:D.【點睛】本題考查了相互垂直的直線斜率之間的關系,同角三角函數(shù)基本關系式,考查計算能力,屬于基礎題.3、B【解析】
根據(jù)集合中的元素,可得集合,然后根據(jù)交集的概念,可得,最后根據(jù)子集的概念,利用計算,可得結果.【詳解】由題可知:,當時,當時,當時,當時,所以集合則所以的子集共有故選:B【點睛】本題考查集合的運算以及集合子集個數(shù)的計算,當集合中有元素時,集合子集的個數(shù)為,真子集個數(shù)為,非空子集為,非空真子集為,屬基礎題.4、A【解析】分析:設,則,把用表示,然后令,由導數(shù)求得的最小值.詳解:設,則,,,∴,令,則,,∴是上的增函數(shù),又,∴當時,,當時,,即在上單調遞減,在上單調遞增,是極小值也是最小值,,∴的最小值是.故選A.點睛:本題易錯選B,利用導數(shù)法求函數(shù)的最值,解題時學生可能不會將其中求的最小值問題,通過構造新函數(shù),轉化為求函數(shù)的最小值問題,另外通過二次求導,確定函數(shù)的單調區(qū)間也很容易出錯.5、C【解析】
根據(jù)等差數(shù)列的求和公式即可得出.【詳解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故選C.【點睛】本題主要考查了等差數(shù)列的求和公式,考查了推理能力與計算能力,屬于中檔題.6、A【解析】
先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于常考題型.7、C【解析】
畫出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可,【詳解】由題意可知幾何體的直觀圖如圖:上部是底面半徑為1,高為3的圓柱,下部是底面半徑為2,高為2的圓錐,幾何體的表面積為:,故選:C【點睛】本題考查三視圖求解幾何體的表面積,判斷幾何體的形狀是解題的關鍵.8、B【解析】
求出圓心,代入漸近線方程,找到的關系,即可求解.【詳解】解:,一條漸近線,故選:B【點睛】利用的關系求雙曲線的離心率,是基礎題.9、A【解析】
要計算這個數(shù)的和,這就需要循環(huán)50次,這樣可以確定判斷語句①,根據(jù)累加最的變化規(guī)律可以確定語句②.【詳解】因為計算這個數(shù)的和,循環(huán)變量的初值為1,所以步長應該為1,故判斷語句①應為,第個數(shù)是,第個數(shù)比第個數(shù)大,第個數(shù)比第個數(shù)大,第個數(shù)比第個數(shù)大,這樣可以確定語句②為,故本題選A.【點睛】本題考查了補充循環(huán)結構,正確讀懂題意是解本題的關鍵.10、D【解析】
由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當時最小,設正方體的棱長為,得,進一步求出四面體的體積即可.【詳解】解:如圖,
∵點M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時,最小,
∴
設正方體的棱長為,則,∴.
取,連接,則共面,在中,設到的距離為,
設到平面的距離為,
.
故選D.【點睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計算能力,是中檔題.11、D【解析】
根據(jù)頻率分布直方圖中頻率=小矩形的高×組距計算成績低于60分的頻率,再根據(jù)樣本容量求出班級人數(shù).【詳解】根據(jù)頻率分布直方圖,得:低于60分的頻率是(0.005+0.010)×20=0.30,∴樣本容量(即該班的學生人數(shù))是60(人).故選:D.【點睛】本題考查了頻率分布直方圖的應用問題,也考查了頻率的應用問題,屬于基礎題12、C【解析】
將圓錐的體積用兩種方式表達,即,解出即可.【詳解】設圓錐底面圓的半徑為r,則,又,故,所以,.故選:C.【點睛】本題利用古代數(shù)學問題考查圓錐體積計算的實際應用,考查學生的運算求解能力、創(chuàng)新能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先由等面積法求得,利用向量幾何意義求解即可.【詳解】由等面積法可得,依題意可得,,所以.故答案為:【點睛】本題考查向量的數(shù)量積,重點考查向量數(shù)量積的幾何意義,屬于基礎題.14、【解析】試題分析:由題意得函數(shù)在[2,上單調遞增,當時在[2,上單調遞增;當時在上單調遞增;在上單調遞減,因此實數(shù)a的取值范圍是考點:函數(shù)單調性15、-254【解析】
利用代入即可得到,即是等比數(shù)列,再利用等比數(shù)列的通項公式計算即可.【詳解】由已知,得,即,所以又,即,,所以是以-4為首項,2為公比的等比數(shù)列,所以,即,所以。故答案為:【點睛】本題考查已知與的關系求,考查學生的數(shù)學運算求解能力,是一道中檔題.16、【解析】分析:可先用向量的數(shù)量積公式將原式變形為:,然后再結合余弦定理整理為,再由cosC的余弦定理得到a,b的關系式,最后利用基本不等式求解即可.詳解:已知,可得,將角A,B,C的余弦定理代入得,由,當a=b時取到等號,故cosC的最小值為.點睛:考查向量的數(shù)量積、余弦定理、基本不等式的綜合運用,能正確轉化是解題關鍵.屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2).【解析】試題分析:(1)由三角形面積公式建立等式,再利用正弦定理將邊化成角,從而得出的值;(2)由和計算出,從而求出角,根據(jù)題設和余弦定理可以求出和的值,從而求出的周長為.試題解析:(1)由題設得,即.由正弦定理得.故.(2)由題設及(1)得,即.所以,故.由題設得,即.由余弦定理得,即,得.故的周長為.點睛:在處理解三角形問題時,要注意抓住題目所給的條件,當題設中給定三角形的面積,可以使用面積公式建立等式,再將所有邊的關系轉化為角的關系,有時需將角的關系轉化為邊的關系;解三角形問題常見的一種考題是“已知一條邊的長度和它所對的角,求面積或周長的取值范圍”或者“已知一條邊的長度和它所對的角,再有另外一個條件,求面積或周長的值”,這類問題的通法思路是:全部轉化為角的關系,建立函數(shù)關系式,如,從而求出范圍,或利用余弦定理以及基本不等式求范圍;求具體的值直接利用余弦定理和給定條件即可.18、(1);(2)證明見解析.【解析】
(1),分,,三種情況推理即可;(2)由(1)可得,即,利用累加法即可得到證明.【詳解】(1)由,得.當時,方程的,因此在區(qū)間上恒為負數(shù).所以時,,函數(shù)在區(qū)間上單調遞減.又,所以函數(shù)在區(qū)間上恒成立;當時,方程有兩個不等實根,且滿足,所以函數(shù)的導函數(shù)在區(qū)間上大于零,函數(shù)在區(qū)間上單增,又,所以函數(shù)在區(qū)間上恒大于零,不滿足題意;當時,在區(qū)間上,函數(shù)在區(qū)間上恒為正數(shù),所以在區(qū)間上恒為正數(shù),不滿足題意;綜上可知:若時,不等式恒成立,的最小值為.(2)由第(1)知:若時,.若,則,即成立.將換成,得成立,即,以此類推,得,,上述各式相加,得,又,所以.【點睛】本題考查利用導數(shù)研究函數(shù)恒成立問題、證明數(shù)列不等式問題,考查學生的邏輯推理能力以及數(shù)學計算能力,是一道難題.19、(1)當時,遞增區(qū)間時,無遞減區(qū)間,當時,遞增區(qū)間時,遞減區(qū)間時;(2)或.【解析】
(1)求出,對分類討論,先考慮(或)恒成立的范圍,并以此作為的分類標準,若不恒成立,求解,即可得出結論;(2)有解,即,令,轉化求函數(shù)只有一個實數(shù)解,根據(jù)(1)中的結論,即可求解.【詳解】(1),當時,恒成立,當時,,綜上,當時,遞增區(qū)間時,無遞減區(qū)間,當時,遞增區(qū)間時,遞減區(qū)間時;(2),令,原方程只有一個解,只需只有一個解,即求只有一個零點時,的取值范圍,由(1)得當時,在單調遞增,且,函數(shù)只有一個零點,原方程只有一個解,當時,由(1)得在出取得極小值,也是最小值,當時,,此時函數(shù)只有一個零點,原方程只有一個解,當且遞增區(qū)間時,遞減區(qū)間時;,當,有兩個零點,即原方程有兩個解,不合題意,所以的取值范圍是或.【點睛】本題考查導數(shù)的綜合應用,涉及到單調性、零點、極值最值,考查分類討論和等價轉化思想,屬于中檔題.20、(1)證明見解析(2)【解析】
(1)解法一:作的中點,連接,.利用三角形的中位線證得,利用梯形中位線證得,由此證得平面平面,進而證得平面.解法二:建立空間直角坐標系,通過證明直線的方向向量和平面的法向量垂直,證得平面.(2)利用平面和平面法向量,計算出二面角的余弦值.【詳解】(1)法一:作的中點,連接,.又為的中點,∴為的中位線,∴,又為的中點,∴為梯形的中位線,∴,在平面中,,在平面中,,∴平面平面,又平面,∴平面.另解:(法二)∵在長方體中,,,兩兩互相垂直,建立空間直角坐標系如圖所示,則,,,,,,,,,,,.(1)設平面的一個法向量為,則,令,則,.∴,又,∵,,又平面,平面.(2)設平面的一個法向量為,則,令,則,.∴.同理可算得平面的一個法向量為∴,又由圖可知二面角的平面角為一個鈍角,故二面角的余弦值為.【點睛】本小題考查線面的位置關系,空間向量與線面角,二面角等基礎知識,考查空間想象能力,推理論證能力,運算求解能力,數(shù)形結合思想,化歸與轉化思想.21、(1)或;(2)見解析【解析】
(1)根據(jù),利用零點分段法解不等式,或作出函數(shù)的圖像,利用函數(shù)的圖像解不等式;(2)由(1)作出的函數(shù)圖像求出的最小值為,可知,代入中,然后給等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版?zhèn)€人信用卡債務代償協(xié)議書3篇
- 2024年版農田堰塘建設協(xié)議模板版B版
- 二零二五年度鋼筋加工廠勞務分包合同范本6篇
- 武漢紡織大學外經(jīng)貿學院《分子模擬的原理和應用》2023-2024學年第一學期期末試卷
- 二零二五版公墓環(huán)境維護與生態(tài)保護合作協(xié)議3篇
- 2024版影視制作與版權轉讓合同
- 2024英倫游學夏令營青少年領袖培養(yǎng)與團隊建設服務合同3篇
- 二零二五年度城市更新項目舊房收購合同細則3篇
- 太原幼兒師范高等??茖W校《公共藝術項目實踐》2023-2024學年第一學期期末試卷
- 蘇州工藝美術職業(yè)技術學院《物聯(lián)網(wǎng)與云計算》2023-2024學年第一學期期末試卷
- 《項目施工組織設計開題報告(含提綱)3000字》
- ICU常見藥物課件
- CNAS實驗室評審不符合項整改報告
- 農民工考勤表(模板)
- 承臺混凝土施工技術交底
- 臥床患者更換床單-軸線翻身
- 計量基礎知識培訓教材201309
- 中考英語 短文填詞、選詞填空練習
- 阿特拉斯基本擰緊技術ppt課件
- 初一至初三數(shù)學全部知識點
- 新課程理念下的班主任工作藝術
評論
0/150
提交評論