專題13ω的取值范圍與最值問題(原卷版)_第1頁
專題13ω的取值范圍與最值問題(原卷版)_第2頁
專題13ω的取值范圍與最值問題(原卷版)_第3頁
專題13ω的取值范圍與最值問題(原卷版)_第4頁
專題13ω的取值范圍與最值問題(原卷版)_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

專題13ω的取值范圍與最值問題【考點(diǎn)預(yù)測】1.在區(qū)間內(nèi)沒有零點(diǎn)同理,在區(qū)間內(nèi)沒有零點(diǎn)2.在區(qū)間內(nèi)有個零點(diǎn)同理在區(qū)間內(nèi)有個零點(diǎn)3.在區(qū)間內(nèi)有個零點(diǎn)同理在區(qū)間內(nèi)有個零點(diǎn)4.已知一條對稱軸和一個對稱中心,由于對稱軸和對稱中心的水平距離為,則.5.已知單調(diào)區(qū)間,則.【方法技巧與總結(jié)】解決ω的取值范圍與最值問題主要方法是換元法和卡住ω的大致范圍.【題型歸納目錄】題型一:零點(diǎn)問題題型二:單調(diào)問題題型三:最值問題題型四:極值問題題型五:對稱性題型六:性質(zhì)的綜合問題【典例例題】題型一:零點(diǎn)問題例1.(2022·江西·臨川一中模擬預(yù)測(文))函數(shù)在上沒有零點(diǎn),則的取值范圍是(

)A. B.C. D.例2.(2022·安徽·合肥市第八中學(xué)模擬預(yù)測(理))已知函數(shù)在區(qū)間上有且僅有4個零點(diǎn),則的取值范圍是(

)A. B. C. D.例3.(2022·廣西·貴港市高級中學(xué)三模(理))已知在有且僅有6個實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為(

)A. B.C. D.例4.(2022·海南華僑中學(xué)模擬預(yù)測)已知函數(shù)在上有且僅有個零點(diǎn),則的取值范圍是(

)A. B.C. D.例5.(2022·陜西·模擬預(yù)測(理))已知函數(shù)在上有且只有5個零點(diǎn),則實(shí)數(shù)的范圍是(

)A. B. C. D.例6.(2022·廣東·三模)已知函數(shù),且f(x)在[0,]有且僅有3個零點(diǎn),則的取值范圍是(

)A.[,) B.[,) C.[,) D.[,)例7.(2022·江西贛州·一模(文))已知函數(shù)在區(qū)間上有且僅有2個不同的零點(diǎn),給出下列三個結(jié)論:①在區(qū)間上有且僅有2條對稱軸;②在區(qū)間上單調(diào)遞增;③的取值范圍是.其中正確的個數(shù)為(

)A.0 B.1 C.2 D.3例8.(2022·全國·高三專題練習(xí)(理))已知函數(shù)在上恰有3個零點(diǎn),則的取值范圍是(

)A. B.C. D.例9.(2022·山西·一模(文))已知函數(shù)在上恰有3個零點(diǎn),則的取值范圍是(

)A. B.C. D.例10.(2022·山西·太原五中高三階段練習(xí)(文))已知函數(shù),若方程在區(qū)間上恰有5個實(shí)根,則的取值范圍是(

)A. B.C. D.例11.(2022·陜西渭南·一模(理))若關(guān)于的方程在上有實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是________.題型二:單調(diào)問題例12.(2022·江西贛州·二模(理))已知函數(shù)相鄰兩個對稱軸之間的距離為2π,若f(x)在(m,m)上是增函數(shù),則m的取值范圍是(

)A.(0,] B.(0,] C.(0,] D.(0,]例13.(2022·內(nèi)蒙古赤峰·模擬預(yù)測(文))函數(shù)的圖象向右平移個單位長度后得到函數(shù)的圖象,的零點(diǎn)到軸的最近距離小于,且在上單調(diào)遞增,則的取值范圍是(

)A. B.C. D.例14.(2022·安徽·蕪湖一中高三階段練習(xí)(文))函數(shù)在上是減函數(shù),則的取值范圍是(

)A. B. C. D.例15.(2022·河南·汝州市第一高級中學(xué)模擬預(yù)測(理))已知函數(shù)在區(qū)間上單調(diào)遞減,則實(shí)數(shù)的取值范圍是(

)A. B. C. D.例16.(2022·陜西榆林·三模(理))已知,函數(shù)在上單調(diào)遞增,且對任意,都有,則的取值范圍為(

)A. B. C. D.例17.(2022·全國·高三專題練習(xí))將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的倍縱坐標(biāo)不變,再向左平移個單位長度,得到函數(shù)的圖象,若在上單調(diào)遞減,則實(shí)數(shù)的取值范圍為(

)A. B. C. D.例18.(2022·江西·上饒市第一中學(xué)模擬預(yù)測(理))已知函數(shù)在上單調(diào)遞增,則a的取值范圍為(

)A. B. C. D.或例19.(2022·天津市濱海新區(qū)塘沽第一中學(xué)三模)設(shè),函數(shù),,若在上單調(diào)遞增,且函數(shù)與的圖象有三個交點(diǎn),則的取值范圍(

)A. B. C. D.例20.(2022·湖南·長沙一中模擬預(yù)測)已知函數(shù),若在區(qū)間內(nèi)單調(diào)遞減,則的取值范圍是(

)A. B. C. D.題型三:最值問題例21.(2022·重慶八中高三階段練習(xí))函數(shù)在上的值域是,則的取值范圍是(

)A. B. C. D.例22.(2022·安徽馬鞍山·三模(理))函數(shù)在區(qū)間上恰有兩個最小值點(diǎn),則的取值范圍為(

)A. B. C. D.例23.(2022·河南·寶豐縣第一高級中學(xué)模擬預(yù)測(理))已知函數(shù)在區(qū)間上的值域?yàn)?,則的取值范圍為(

)A. B. C. D.例24.(2022·全國·高三專題練習(xí)(文))已知函數(shù)的定義域?yàn)?,值域?yàn)?,則的取值范圍是(

)A. B.C. D.例25.(2022·陜西·武功縣普集高級中學(xué)高三階段練習(xí)(理))函數(shù)在內(nèi)恰有兩個最小值點(diǎn),則的范圍是(

)A. B.C. D.例26.(2022·全國·高三專題練習(xí)(理))已知函數(shù),若至少存在兩個不相等的實(shí)數(shù),使得,則實(shí)數(shù)的取值范圍是________.例27.(2022·貴州·鎮(zhèn)遠(yuǎn)縣文德民族中學(xué)校模擬預(yù)測(文))已知函數(shù),若函數(shù)的圖象在區(qū)間上的最高點(diǎn)和最低點(diǎn)共有個,下列說法正確的是___________.①在上有且僅有個零點(diǎn);②在上有且僅有個極大值點(diǎn);③的取值范圍是;④在上為單遞增函數(shù).例28.(2022·全國·高三專題練習(xí)(文))已知函數(shù)在(0,2]上有最大值和最小值,且取得最大值和最小值的自變量的值都是唯一的,則的取值范圍是___________.題型四:極值問題例29.(2022·全國·高三專題練習(xí))若函數(shù)()在上單調(diào),且在上存在極值點(diǎn),則ω的取值范圍是(

)A. B. C. D.例30.(2022·全國·高三專題練習(xí))已知函數(shù)在區(qū)間上無極值,則的取值范圍是(

)A.(0,5] B.(0,5)C.(0,) D.(0,]例31.(2022·安徽·安慶一中高三階段練習(xí)(文))已知函數(shù)在區(qū)間不存在極值點(diǎn),則的取值范圍是(

)A. B.C. D.例32.(2022·湖北武漢·模擬預(yù)測)已知偶函數(shù)(,)在上恰有2個極大值點(diǎn),則實(shí)數(shù)的取值范圍為(

)A. B.C. D.題型五:對稱性例33.(2022·安徽·蒙城第一中學(xué)高三階段練習(xí)(理))已知函數(shù)在區(qū)間[0,]上有且僅有3條對稱軸,則的取值范圍是(

)A.(,] B.(,] C.[,) D.[,)例34.(2022·福建龍巖·模擬預(yù)測)已知函數(shù)在內(nèi)有且僅有三條對稱軸,則的取值范圍是(

)A. B. C. D.題型六:性質(zhì)的綜合問題例35.(2022·全國·高考真題(理))設(shè)函數(shù)在區(qū)間恰有三個極值點(diǎn)、兩個零點(diǎn),則的取值范圍是(

)A. B. C. D.(多選題)例36.(2022·廣東韶關(guān)·二模)已知函數(shù),則下列結(jié)論中正確的是(

)A.若ω=2,則將的圖象向左平移個單位長度后得到的圖象關(guān)于原點(diǎn)對稱B.若,且的最小值為,則ω=2C.若在[0,]上單調(diào)遞增,則ω的取值范圍為(0,3]D.若在[0,π]有且僅有3個零點(diǎn),則ω的取值范圍是(多選題)例37.(2022·湖北武漢·模擬預(yù)測)已知,則下列判斷中,錯誤的是(

)A.若,,且,則B.存在,使得的圖像右移個單位長度后得到的圖像關(guān)于軸對稱C.若在上恰有7個零點(diǎn),則的取值范圍為D.若在上單調(diào)遞增,則的取值范圍為例38.(2022·貴州貴陽·模擬預(yù)測(理))若函數(shù)在上有且僅有3個零點(diǎn)和2個極小值點(diǎn),則的取值范圍為______.例39.(2022·湖南永州·三模)已知函數(shù),若在內(nèi)單調(diào)且有一個零點(diǎn),則的取值范圍是__________.例40.(2022·全國·高三專題練習(xí))已知函數(shù)(ω>0),若在上恰有兩個零點(diǎn),且在上單調(diào)遞增,則ω的取值范圍是________.例41.(2022·全國·高三專題練習(xí)(理))已知函數(shù),滿足函數(shù)是奇函數(shù),且當(dāng)取最小值時,函數(shù)在區(qū)間和上均單調(diào)遞增,則實(shí)數(shù)的取值范圍為__________.【過關(guān)測試】一、單選題1.(2022·全國·高三專題練習(xí))已知函數(shù)在內(nèi)有且僅有兩個零點(diǎn),則的取值范圍是(

)A. B. C. D.2.(2022·全國·高三專題練習(xí))已知,函數(shù)在上單調(diào)遞減,則的取值范圍是(

)A. B. C. D.3.(2021·安徽·銅陵一中高三階段練習(xí)(文))已知函數(shù),若方程在上有且只有五個實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為(

)A. B. C. D.4.(2022·全國·高三專題練習(xí)(理))已知函數(shù)在區(qū)間上有且僅有4條對稱軸,給出下列四個結(jié)論:①在區(qū)間上有且僅有3個不同的零點(diǎn);②的最小正周期可能是;③的取值范圍是;④在區(qū)間上單調(diào)遞增.其中所有正確結(jié)論的序號是(

)A.①④ B.②③ C.②④ D.②③④5.(2021·山東省濰坊第四中學(xué)高三開學(xué)考試)函數(shù)在有且僅有3個零點(diǎn),則下列說法正確的是(

)A.在不存在,使得B.函數(shù)在僅有1個最大值點(diǎn)C.函數(shù)在上單調(diào)進(jìn)增D.實(shí)數(shù)的取值范圍是6.(2022·湖南·長沙市明德中學(xué)二模)已知函數(shù),若,,則(

)A.點(diǎn)不可能是的一個對稱中心B.在上單調(diào)遞減C.的最大值為D.的最小值為7.(2022·甘肅酒泉·模擬預(yù)測(理))已知函數(shù),,函數(shù)在上有且僅有一個極小值但沒有極大值,則的最小值為(

)A. B. C. D.8.(2022·陜西西安·二模(理))已知函數(shù),若函數(shù)的一個零點(diǎn)為.其圖像的一條對稱軸為直線,且在上單調(diào),則的最大值為(

)A.2 B.6 C.10 D.14二、多選題9.(2022·全國·模擬預(yù)測)設(shè)函數(shù),且函數(shù)在上是單調(diào)的,則下列說法正確是(

)A.若是奇函數(shù),則的最大值為3B.若,則的最大值為C.若恒成立,則的最大值為2D.若的圖象關(guān)于點(diǎn)中心對稱,則的最大值為10.(2022·廣東·廣州市第四中學(xué)高三階段練習(xí))若函數(shù)在區(qū)間內(nèi)沒有最值,則下列說法正確的是(

)A.函數(shù)的最小正周期可能為B.的取值范圍是C.當(dāng)取最大值時,是函數(shù)的一條對稱軸D.當(dāng)取最大值時,是函數(shù)的一個對稱中心11.(2022·江蘇·南京市第一中學(xué)高三開學(xué)考試)已知函數(shù),下面結(jié)論正確的是(

)A.若,是函數(shù)的兩個不同的極值點(diǎn),且的最小值為,則B.存在,使得往右平移個單位長度后得到的圖象關(guān)于原點(diǎn)對稱C.若在上恰有6個零點(diǎn),則的取值范圍是D.若,則在上單調(diào)遞增三、填空題12.(2022·四川成都·模擬預(yù)測(理))已知函數(shù),若,且在上有最大值,沒有最小值,則的最大值為______.13.(2022·江西上饒·二模(理))已知函數(shù),若且在區(qū)間上有最小值無最大值,則_______.14.(2021·上海松江·一模)已知函數(shù),若對任意的實(shí)數(shù)都成立,則的最小值為___________.15.(2021·全國·高三專題練習(xí))已知,,且在區(qū)間上有最小值,無最大值,則______.16.(2022·河北張家口·高三期末)已知函數(shù),且函數(shù)在區(qū)間上單調(diào)遞減,則的最大值為___________.17.(2022·全國·高三專題練習(xí)(文))已知函數(shù)為的零點(diǎn),為圖像的對稱軸,且在單調(diào),則的最大值是______.9.當(dāng)時,,,,.此時在單調(diào)遞減,不滿足題意.當(dāng)時,,,,,此時在不單調(diào),不滿足題意;故此時無解.(2)若在單調(diào)遞減,則,且,,即③,且,④,把③④可得:,,故有奇數(shù)的最大值為9.當(dāng)時,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論