版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第二節(jié)一、正項(xiàng)級(jí)數(shù)及其審斂法正項(xiàng)級(jí)數(shù)及其審斂法一、正項(xiàng)級(jí)數(shù)及其審斂法若定理1.
正項(xiàng)級(jí)數(shù)收斂部分和序列有界.若收斂,∴部分和數(shù)列有界,故從而又已知故有界.則稱為正項(xiàng)級(jí)數(shù)
.單調(diào)遞增,收斂,也收斂.證:“”“”都有定理2(比較審斂法)設(shè)且存在對(duì)一切有(1)若強(qiáng)級(jí)數(shù)則弱級(jí)數(shù)(2)若弱級(jí)數(shù)則強(qiáng)級(jí)數(shù)證:設(shè)對(duì)一切收斂,也收斂;發(fā)散,也發(fā)散.分別表示弱級(jí)數(shù)和強(qiáng)級(jí)數(shù)的部分和,則有是兩個(gè)正項(xiàng)級(jí)數(shù),(常數(shù)k>0),因在級(jí)數(shù)前加、減有限項(xiàng)不改變其斂散性,故不妨(1)若強(qiáng)級(jí)數(shù)則有因此對(duì)一切有由定理1可知,則有(2)若弱級(jí)數(shù)因此這說明強(qiáng)級(jí)數(shù)也發(fā)散.也收斂.發(fā)散,收斂,弱級(jí)數(shù)例1.
討論p
級(jí)數(shù)(常數(shù)p>0)的斂散性.解:1)若因?yàn)閷?duì)一切而調(diào)和級(jí)數(shù)由比較審斂法可知p
級(jí)數(shù)發(fā)散.發(fā)散,因?yàn)楫?dāng)故考慮強(qiáng)級(jí)數(shù)的部分和故強(qiáng)級(jí)數(shù)收斂,由比較審斂法知
p
級(jí)數(shù)收斂.時(shí),2)若調(diào)和級(jí)數(shù)與p級(jí)數(shù)是兩個(gè)常用的比較級(jí)數(shù).若存在對(duì)一切證明級(jí)數(shù)發(fā)散.證:
因?yàn)槎?jí)數(shù)發(fā)散根據(jù)比較審斂法可知,所給級(jí)數(shù)發(fā)散.例2.定理3.
(比較審斂法的極限形式)則有兩個(gè)級(jí)數(shù)同時(shí)收斂或發(fā)散;(2)當(dāng)
l=
0
(3)當(dāng)
l=∞
證:
據(jù)極限定義,設(shè)兩正項(xiàng)級(jí)數(shù)滿足(1)當(dāng)0<l<∞
時(shí),由定理
2
可知同時(shí)收斂或同時(shí)發(fā)散;(3)當(dāng)l=∞時(shí),即由定理2可知,若發(fā)散,(1)當(dāng)0<l<∞時(shí),(2)當(dāng)l=
0時(shí),由定理2知收斂,若是兩個(gè)正項(xiàng)級(jí)數(shù),(1)當(dāng)時(shí),兩個(gè)級(jí)數(shù)同時(shí)收斂或發(fā)散;2)特別取可得如下結(jié)論:對(duì)正項(xiàng)級(jí)數(shù)(2)當(dāng)且收斂時(shí),(3)當(dāng)且發(fā)散時(shí),也收斂;也發(fā)散.注:1)un,vn均為無窮小時(shí),l
的值反映了它們不同階的比較.的斂散性.
~例3.
判別級(jí)數(shù)的斂散性.
解:
根據(jù)比較審斂法的極限形式知例4.
判別級(jí)數(shù)解:根據(jù)比較審斂法的極限形式知~定理4
.
比值審斂法(D’alembert判別法)設(shè)為正項(xiàng)級(jí)數(shù),且則(1)當(dāng)(2)當(dāng)證:(1)收斂,時(shí),級(jí)數(shù)收斂;或時(shí),級(jí)數(shù)發(fā)散.由比較審斂法可知因此所以級(jí)數(shù)發(fā)散.時(shí)(2)當(dāng)說明:
當(dāng)時(shí),級(jí)數(shù)可能收斂也可能發(fā)散.例如,
p–級(jí)數(shù)但級(jí)數(shù)收斂;級(jí)數(shù)發(fā)散.從而例5.
討論級(jí)數(shù)的斂散性.解:
根據(jù)定理4可知:級(jí)數(shù)收斂;級(jí)數(shù)發(fā)散;
對(duì)任意給定的正數(shù)
*定理5.
根值審斂法(Cauchy判別法)設(shè)為正項(xiàng)則證明提示:
即分別利用上述不等式的左,右部分,可推出結(jié)論正確.級(jí)數(shù),且時(shí),級(jí)數(shù)可能收斂也可能發(fā)散.例如
,p–
級(jí)數(shù)說明:但級(jí)數(shù)收斂;級(jí)數(shù)發(fā)散.例6.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版杉木林木材市場調(diào)研與買賣預(yù)測合同3篇
- 二零二五年幼兒園幼兒安全防護(hù)責(zé)任合同2篇
- 2025年度智能家居門窗系統(tǒng)安裝及售后服務(wù)合同范本3篇
- 二零二五版農(nóng)用車租賃管理及技術(shù)支持合同3篇
- 2025年度木工材料采購與供應(yīng)合同范本4篇
- 二零二五年礦山轉(zhuǎn)讓協(xié)議及礦產(chǎn)資源開發(fā)運(yùn)營合同3篇
- 二零二五年度投資擔(dān)保公司產(chǎn)業(yè)投資基金合同
- 課題申報(bào)參考:明清江南文人居室陳設(shè)藝術(shù)研究
- 2025年度城市地下綜合管廊配電箱柜安全防護(hù)采購合同4篇
- 二零二五年度文化創(chuàng)意產(chǎn)業(yè)合作聘請(qǐng)兼職勞務(wù)合同
- 人工智能算法與實(shí)踐-第16章 LSTM神經(jīng)網(wǎng)絡(luò)
- 17個(gè)崗位安全操作規(guī)程手冊(cè)
- 數(shù)學(xué)史簡介課件可編輯全文
- 2025年山東省濟(jì)南市第一中學(xué)高三下學(xué)期期末統(tǒng)一考試物理試題含解析
- 中學(xué)安全辦2024-2025學(xué)年工作計(jì)劃
- 網(wǎng)絡(luò)安全保障服務(wù)方案(網(wǎng)絡(luò)安全運(yùn)維、重保服務(wù))
- 2024年鄉(xiāng)村振興(產(chǎn)業(yè)、文化、生態(tài))等實(shí)施戰(zhàn)略知識(shí)考試題庫與答案
- 現(xiàn)代科學(xué)技術(shù)概論智慧樹知到期末考試答案章節(jié)答案2024年成都師范學(xué)院
- 軟件模塊化設(shè)計(jì)與開發(fā)標(biāo)準(zhǔn)與規(guī)范
- 2024年遼寧鐵道職業(yè)技術(shù)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 有機(jī)農(nóng)業(yè)種植模式
評(píng)論
0/150
提交評(píng)論