新高考數(shù)學一輪復習學案第12講 不等式大小關(guān)系及不等式的解法(解析版)_第1頁
新高考數(shù)學一輪復習學案第12講 不等式大小關(guān)系及不等式的解法(解析版)_第2頁
新高考數(shù)學一輪復習學案第12講 不等式大小關(guān)系及不等式的解法(解析版)_第3頁
新高考數(shù)學一輪復習學案第12講 不等式大小關(guān)系及不等式的解法(解析版)_第4頁
新高考數(shù)學一輪復習學案第12講 不等式大小關(guān)系及不等式的解法(解析版)_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第12講不等式大小關(guān)系及不等式的解法【知識點總結(jié)】一、基本概念不等關(guān)系與等量關(guān)系一樣,也是自然界中存在的基本數(shù)量關(guān)系,他們在現(xiàn)實世界和日常生活中大量存在.不等關(guān)系建立在表示數(shù)量的代數(shù)式之間,可以是常量、變量及稍復雜的代數(shù)式.用不等號(如“”,“”,“”,“”,“”等)連接的式子叫做不等式,其中“”或“”連接的不等式叫做嚴格不等式;用“”或“”連接的不等式叫做非嚴格的不等式.不等式可分為絕對值不等式(不論用什么實數(shù)代替不等式中的字母,不等式都成立)、條件不等式(只能用某些范圍內(nèi)的實數(shù)代替不等式中的字母,不等式才能夠成立)和矛盾不等式(不論用什么樣的實數(shù)代替不等式中的字母,不等式都不能成立).二、基本性質(zhì)不等式的性質(zhì)是證明和解不等式的主要依據(jù).運用時,對每一條性質(zhì)要弄清條件和結(jié)論,注意條件加強和放寬厚條件和結(jié)論之間的變化;不僅要記住不等式運算法則的結(jié)論形式,還要掌握法則成立的條件,避免由于忽略某些限制條件而造成解題失誤.1.兩個不等式的同向合成,一律為“”(充分不必要條件)(1)SKIPIF1<0(傳遞性,注意找中間量)(2)SKIPIF1<0(同向可加性)(3)SKIPIF1<0(同正可乘性,注意條件為正)2.一個不等式的等價變形,一律為“”(充要條件),這是不等式解法的理論依據(jù)(1)SKIPIF1<0.(2)SKIPIF1<0(對稱性)(3)SKIPIF1<0(乘正保號性)(4)SKIPIF1<0(5)SKIPIF1<0(不等量加等量)(6)SKIPIF1<0(乘方保號性,注意條件為正)(7)SKIPIF1<0(開方保號性,注意條件為正)(8)SKIPIF1<0(同號可倒性);SKIPIF1<0.三、一元一次不等式(SKIPIF1<0)(1)若SKIPIF1<0,解集為SKIPIF1<0.(2)若SKIPIF1<0,解集為SKIPIF1<0(3)若SKIPIF1<0,當SKIPIF1<0時,解集為SKIPIF1<0;當SKIPIF1<0時,解集為SKIPIF1<0四、一元一次不等式組(SKIPIF1<0)(1)SKIPIF1<0,解集為SKIPIF1<0.(2)SKIPIF1<0,解集為SKIPIF1<0(3)SKIPIF1<0,解集為SKIPIF1<0(4)SKIPIF1<0,解集為SKIPIF1<0五、一元二次不等式一元二次不等式SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0是方程SKIPIF1<0的兩個根,且SKIPIF1<0(1)當SKIPIF1<0時,二次函數(shù)圖象開口向上.(2)=1\*GB3①若SKIPIF1<0,解集為SKIPIF1<0.=2\*GB3②若SKIPIF1<0,解集為SKIPIF1<0.=3\*GB3③若SKIPIF1<0,解集為SKIPIF1<0.(2)當SKIPIF1<0時,二次函數(shù)圖象開口向下.=1\*GB3①若SKIPIF1<0,解集為SKIPIF1<0=2\*GB3②若SKIPIF1<0,解集為SKIPIF1<0六、簡單的一元高次不等式的解法簡單的一元高次不等式常用“穿根法”求解,其具體步驟如下.例如,解一元高次不等式SKIPIF1<0(1)將SKIPIF1<0最高次項系數(shù)化為正數(shù)(2)將SKIPIF1<0分解為若干個一次因式或二次不可分因式(SKIPIF1<0)(3)將每一個一次因式的根標在數(shù)軸上,從右上方依次通過每一點畫曲線(注意重根情況,偶次方根切而不過,奇次方根既穿又過,簡稱“奇穿偶不穿”).(4)根據(jù)曲線顯現(xiàn)出的SKIPIF1<0的值的符號變化規(guī)律寫出不等式的解集.七、分式不等式(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0(4)SKIPIF1<0八、絕對值不等式(1)SKIPIF1<0(2)SKIPIF1<0;SKIPIF1<0;(3)含有兩個或兩個以上絕對值符號的不等式,可用零點分段法和圖象法求解【典型例題】例1.(2021·黑龍江·哈爾濱市第三十二中學校高三期中(文))下列說法正確的有()A.若SKIPIF1<0,則SKIPIF1<0 B.若SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0 D.若SKIPIF1<0,則SKIPIF1<0【答案】B【詳解】A:若SKIPIF1<0,則SKIPIF1<0(SKIPIF1<0),故A錯誤;B:若SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以B正確;C:若SKIPIF1<0,則SKIPIF1<0,所以C錯誤;D:若SKIPIF1<0,則SKIPIF1<0,故D錯誤.故選:B.例2.(2022·全國·高三專題練習)下列四個命題中,為真命題的是()A.若a>b,則ac2>bc2B.若a>b,c>d,則a﹣c>b﹣dC.若a>|b|,則a2>b2D.若a>b,則SKIPIF1<0【答案】C【詳解】當c=0時,A不成立;2>1,3>-1,而2-3<1-(-1),故B不成立;a=2,b=1時,SKIPIF1<0,D不成立;由a>|b|知a>0,所以a2>b2,C正確.故選:C.例3.(2022·全國·高三專題練習)實數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0且SKIPIF1<0,則下列關(guān)系成立的是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】由SKIPIF1<0可得SKIPIF1<0,利用完全平方可得由SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,綜上SKIPIF1<0,故選:D例4.(2022·全國·高三專題練習)已知關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集是SKIPIF1<0或SKIPIF1<0,則SKIPIF1<0的值是___________.【答案】0【詳解】由題意,得:SKIPIF1<0,且SKIPIF1<0,2是方程SKIPIF1<0的兩根,則SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.故答案為:0.例5.(2022·全國·高三專題練習)已知SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0是SKIPIF1<0的充分不必要條件,則實數(shù)SKIPIF1<0的取值范圍是______.【答案】SKIPIF1<0【詳解】由SKIPIF1<0,得SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0是SKIPIF1<0的充分不必要條件,所以集合SKIPIF1<0是集合SKIPIF1<0的真子集,所以SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<0.【點睛】關(guān)鍵點點睛:本題的解答關(guān)鍵是將SKIPIF1<0是SKIPIF1<0的充分不必要條件轉(zhuǎn)化為集合SKIPIF1<0是SKIPIF1<0的真子集.例6.(2022·全國·高三專題練習)若關(guān)于SKIPIF1<0的不等式SKIPIF1<0有實數(shù)解,則SKIPIF1<0的取值范圍是_____.【答案】SKIPIF1<0【詳解】當SKIPIF1<0時,不等式為SKIPIF1<0有實數(shù)解,所以SKIPIF1<0符合題意;當SKIPIF1<0時,不等式對應的二次函數(shù)開口向下,所以不等式SKIPIF1<0有實數(shù)解,符合題意;當SKIPIF1<0時,要使不等式SKIPIF1<0有實數(shù)解,則需滿足SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,綜上所述:SKIPIF1<0的取值范圍是SKIPIF1<0,故答案為:SKIPIF1<0.例7.(2022·全國·高三專題練習)已知關(guān)于SKIPIF1<0的不等式SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍為_______【答案】SKIPIF1<0【詳解】當SKIPIF1<0時,不等式SKIPIF1<0恒成立,所以SKIPIF1<0符合題意;當SKIPIF1<0時,若關(guān)于SKIPIF1<0的不等式SKIPIF1<0恒成立,則SKIPIF1<0,解得:SKIPIF1<0,綜上所述SKIPIF1<0的取值范圍為:SKIPIF1<0,故答案為:SKIPIF1<0.【技能提升訓練】一、單選題1.(2022·全國·高三專題練習)若a,b,c∈R,a>b,則下列不等式恒成立的是()A.SKIPIF1<0<SKIPIF1<0 B.a(chǎn)2>b2C.SKIPIF1<0>SKIPIF1<0 D.a(chǎn)|c|>b|c|【答案】C【分析】舉特例即可判斷選項A,B,D,利用不等式的性質(zhì)判斷C即可作答.【詳解】當a=1,b=-2時,滿足a>b,但SKIPIF1<0,a2<b2,排除A,B;因SKIPIF1<0>0,a>b,由不等式性質(zhì)得SKIPIF1<0,C正確;當c=0時,a|c|>b|c|不成立,排除D,故選:C2.(2022·全國·高三專題練習)若SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)不等式的性質(zhì),求得SKIPIF1<0,且SKIPIF1<0,即可求解.【詳解】由SKIPIF1<0,可得SKIPIF1<0,又由SKIPIF1<0,可得SKIPIF1<0,因為SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0的取值范圍是SKIPIF1<0.故選:A.3.(2022·全國·高三專題練習(文))下列說法正確的個數(shù)為()①若a>|b|,則a2>b2;②若a>b,c>d,則a-c>b-d;③若a>b,c>d,則ac>bd;④若a>b>0,c<0,則SKIPIF1<0.A.1 B.2 C.3 D.4【答案】B【分析】利用不等式的性質(zhì)逐一判斷即可.【詳解】①∵a>|b|≥0,∴a2>b2成立,∴①正確;②取a=2,b=1,c=3,d=-2,則2-3<1-(-2),故②錯誤;③取a=4,b=1,c=-1,d=-2,則4×(-1)<1×(-2),故③錯誤;④∵a>b>0,∴0<SKIPIF1<0<SKIPIF1<0且c<0,∴SKIPIF1<0,∴④正確.故選:B4.(2022·全國·高三專題練習(文))若m=2x2+2x+1,n=(x+1)2,則m,n的大小關(guān)系為()A.m>n B.m≥nC.m<n D.m≤n【答案】B【分析】運用作差法進行比較即可得到答案.【詳解】因為m-n=(2x2+2x+1)-(x+1)2=2x2+2x+1-x2-2x-1=x2≥0.所以m≥n.故選:B.5.(2022·全國·高三專題練習(文))已知-3<a<-2,3<b<4,則SKIPIF1<0的取值范圍為()A.(1,3)B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【分析】先求出a2的范圍,利用不等式的性質(zhì)即可求出SKIPIF1<0的范圍.【詳解】因為-3<a<-2,所以a2∈(4,9),而3<b<4,故SKIPIF1<0的取值范圍為(1,3),故選:A.6.(2022·全國·高三專題練習)設(shè)SKIPIF1<0<SKIPIF1<0<SKIPIF1<0<1,則()A.a(chǎn)a<ab<ba B.a(chǎn)a<ba<abC.a(chǎn)b<aa<ba D.a(chǎn)b<ba<aa【答案】C【分析】先由題得到0<a<b<1,再比較選項數(shù)的大小.【詳解】∵SKIPIF1<0<SKIPIF1<0<SKIPIF1<0<1,∴0<a<b<1.∴SKIPIF1<0=aa-b>1.∴ab<aa.∵SKIPIF1<0=SKIPIF1<0,,0<SKIPIF1<0<1,a>0,∴SKIPIF1<0<1.∴aa<ba.∴ab<aa<ba.故答案為C【點睛】(1)本題主要考查比較法和指數(shù)函數(shù)的性質(zhì),意在考查學生對這些知識的掌握水平和分析推理能力.(2)比差的一般步驟是:作差→變形(配方、因式分解、通分等)→與零比→下結(jié)論;比商的一般步驟是:作商→變形(配方、因式分解、通分等)→與1比→下結(jié)論.如果兩個數(shù)都是正數(shù),一般用比商,其它一般用比差.7.(2022·全國·高三專題練習)已知三個不等式:①ab>0;②bc>ad;③SKIPIF1<0.以其中兩個作為條件,余下一個作為結(jié)論,則可以組成正確命題的個數(shù)是()A.0 B.1 C.2 D.3【答案】D【分析】討論三種情況,利用不等式的性質(zhì),逐一判斷即可.【詳解】(1)若以①②為條件,③為結(jié)論.則SKIPIF1<0,因為SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0;則此時可以組成真命題;(2)若以①③為條件,②為結(jié)論.則由SKIPIF1<0,即SKIPIF1<0,結(jié)合SKIPIF1<0,故可得SKIPIF1<0.則此時可以組成真命題;(3)若以②③為條件,①為結(jié)論.則由SKIPIF1<0,即SKIPIF1<0,結(jié)合SKIPIF1<0,即可得SKIPIF1<0.則此時可以組成真命題.故可以組成正確命題的個數(shù)是:SKIPIF1<0.故選:SKIPIF1<0.【點睛】本題考查不等式的基本性質(zhì),屬基礎(chǔ)題.8.(2022·全國·高三專題練習)若α,β滿足SKIPIF1<0,則2α-β的取值范圍是A.-π<2α-β<0 B.-π<2α-β<πC.-SKIPIF1<0<2α-β<SKIPIF1<0 D.0<2α-β<π【答案】C【分析】由不等式的同向可加性得到SKIPIF1<0,結(jié)合SKIPIF1<0將右側(cè)范圍進一步縮小,即可得到答案【詳解】由SKIPIF1<0知:SKIPIF1<0由SKIPIF1<0知:SKIPIF1<0∴SKIPIF1<0又∵SKIPIF1<0即SKIPIF1<0∴SKIPIF1<0故選:C【點睛】本題考查了不等式的性質(zhì),應用不等式的同向可加性及同減相同的數(shù)符號不變,求范圍9.(2021·山東·濟寧市教育科學研究院高三期末)若集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】先化簡兩個集合A、B,再對兩個集合取并集.【詳解】SKIPIF1<0SKIPIF1<0故SKIPIF1<0故選:C10.(2021·吉林·高三階段練習(文))設(shè)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0是SKIPIF1<0的必要不充分條件,則實數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】解一元二次不等式求命題SKIPIF1<0、SKIPIF1<0對應x的范圍,根據(jù)必要不充分條件列不等式求SKIPIF1<0的取值范圍即可.【詳解】由題設(shè),SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0是SKIPIF1<0的必要不充分條件,∴SKIPIF1<0,解得SKIPIF1<0.故選:A11.(2021·山西省長治市第二中學校高三階段練習(文))若不等式SKIPIF1<0對任意SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】對SKIPIF1<0分兩種情況討論,結(jié)合二次函數(shù)的圖象和性質(zhì)求解.【詳解】當SKIPIF1<0時,SKIPIF1<0,不符合題意,所以舍去;當SKIPIF1<0時,由題得SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0.綜上:SKIPIF1<0.故選:C12.(2012·重慶·高三階段練習(理))若不等式SKIPIF1<0的解集是SKIPIF1<0,則SKIPIF1<0的值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】分析可知關(guān)于SKIPIF1<0的二次方程SKIPIF1<0的兩根分別為SKIPIF1<0、SKIPIF1<0,利用韋達定理可求得實數(shù)SKIPIF1<0、SKIPIF1<0的值,即可得解.【詳解】由題意可知,關(guān)于SKIPIF1<0的二次方程SKIPIF1<0的兩根分別為SKIPIF1<0、SKIPIF1<0,且有SKIPIF1<0,由韋達定理可得SKIPIF1<0,解得SKIPIF1<0,因此,SKIPIF1<0.故選:B.13.(2022·全國·高三專題練習)不等式SKIPIF1<0的解集為()A.SKIPIF1<0 B.(-∞,1) C.SKIPIF1<0∪(1,+∞) D.SKIPIF1<0【答案】A【分析】化簡不等式為SKIPIF1<0,結(jié)合分式不等式的解法,即可求解.【詳解】原不等式SKIPIF1<0,可化為SKIPIF1<0,即SKIPIF1<0,結(jié)合分式不等式的解法,解得SKIPIF1<0,即不等式的解集為SKIPIF1<0.故選:A.14.(2022·全國·高三專題練習)已知集合SKIPIF1<0,集合SKIPIF1<0,則SKIPIF1<0等于()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由對數(shù)函數(shù)及指數(shù)函數(shù)的性質(zhì)可化簡集合,利用交集的定義即求.【詳解】由題意得SKIPIF1<0,即SKIPIF1<0,根據(jù)對數(shù)函數(shù)的單調(diào)性得SKIPIF1<0,解得SKIPIF1<0,所以集合SKIPIF1<0,解不等式SKIPIF1<0得SKIPIF1<0,故集合SKIPIF1<0,所以SKIPIF1<0.故選:B.15.(2022·全國·高三專題練習)已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】首先解一元二次不等式與指數(shù)不等式得到集合SKIPIF1<0、SKIPIF1<0,再根據(jù)交集的定義計算可得;【詳解】解:由SKIPIF1<0可得SKIPIF1<0,SKIPIF1<0可得SKIPIF1<0,所以集合SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:C.16.(2022·江蘇·高三專題練習)已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】通過解不等式分別求出集合A,B,再求出SKIPIF1<0.【詳解】解不等式SKIPIF1<0得SKIPIF1<0,則SKIPIF1<0;解不等式SKIPIF1<0得SKIPIF1<0,則SKIPIF1<0.所以,SKIPIF1<0.故選:D.17.(2021·河北邢臺·高三階段練習)已知不等式SKIPIF1<0的解集是SKIPIF1<0,則實數(shù)SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用三個“二次”的關(guān)系即得.【詳解】SKIPIF1<0的解集是SKIPIF1<0,SKIPIF1<0和SKIPIF1<0是方程SKIPIF1<0的解.由根與系數(shù)的關(guān)系知SKIPIF1<0,解得SKIPIF1<0.故選:D.18.(2022·全國·高三專題練習(理))若關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集為SKIPIF1<0或SKIPIF1<0,則實數(shù)SKIPIF1<0的值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】將分式不等式化簡后根據(jù)解集即可得出答案.【詳解】根據(jù)原不等式可以推出SKIPIF1<0,因為不等式SKIPIF1<0的解集為SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0是方程SKIPIF1<0的兩根,且SKIPIF1<0,所以SKIPIF1<0.故選:A19.(2022·全國·高三專題練習)已知關(guān)于SKIPIF1<0的一元二次不等式SKIPIF1<0的解集中有且僅有5個整數(shù),則SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】求出不等式的解,由其中只有5個整數(shù)得出不等關(guān)系,從而求得參數(shù)范圍.【詳解】原不等式變形為SKIPIF1<0,SKIPIF1<0時,原不等式才有解.且解為SKIPIF1<0,要使其中只有5個整數(shù),則SKIPIF1<0,解得SKIPIF1<0.故選:D.20.(2021·山東·新泰市第一中學高三階段練習)若不等式SKIPIF1<0的解集為SKIPIF1<0,則函數(shù)SKIPIF1<0的圖象可以為()A. B.C. D.【答案】C【分析】由題可得SKIPIF1<0和SKIPIF1<0是方程SKIPIF1<0的兩個根,求出SKIPIF1<0,再根據(jù)二次函數(shù)的性質(zhì)即可得出.【詳解】由題可得SKIPIF1<0和SKIPIF1<0是方程SKIPIF1<0的兩個根,且SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,則函數(shù)圖象開口向下,與SKIPIF1<0軸交于SKIPIF1<0.故選:C.21.(2021·遼寧·渤海大學附屬高級中學高三階段練習)二次不等式SKIPIF1<0的解集為SKIPIF1<0,則SKIPIF1<0的值為()A.SKIPIF1<0 B.5 C.SKIPIF1<0 D.6【答案】D【分析】根據(jù)一元二次不等式的解與方程根的關(guān)系求解即可.【詳解】SKIPIF1<0不等式SKIPIF1<0的解集為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0原不等式等價于SKIPIF1<0,由韋達定理知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:D.二、多選題22.(2022·全國·高三專題練習)下列命題為真命題的是()A.若SKIPIF1<0,則SKIPIF1<0 B.若SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0 D.若SKIPIF1<0,則SKIPIF1<0【答案】BC【分析】利用不等式的性質(zhì)逐一判斷即可求解.【詳解】選項A:當SKIPIF1<0時,不等式不成立,故本命題是假命題;選項B:SKIPIF1<0,SKIPIF1<0,所以本命題是真命題;選項C:SKIPIF1<0,SKIPIF1<0,所以本命題是真命題;選項D:若SKIPIF1<0時,SKIPIF1<0顯然不成立,所以本命題是假命題;故選:BC.三、填空題23.(2022·浙江·高三專題練習)已知SKIPIF1<0,SKIPIF1<0,那么SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大小關(guān)系為_____________.【答案】SKIPIF1<0【分析】利用不等式的性質(zhì)以及作差法即可比較大小.【詳解】由SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<024.(2022·全國·高三專題練習)已知實數(shù)a、x滿足SKIPIF1<0,則SKIPIF1<0、SKIPIF1<0、SKIPIF1<0中的最大數(shù)為______【答案】SKIPIF1<0【分析】根據(jù)不等式的性質(zhì)即可得解.【詳解】解:SKIPIF1<0兩邊同乘SKIPIF1<0得,SKIPIF1<0兩邊同乘SKIPIF1<0得,SKIPIF1<0所以SKIPIF1<0故SKIPIF1<0、SKIPIF1<0、SKIPIF1<0中的最大數(shù)為SKIPIF1<0故答案為:SKIPIF1<0【點睛】本題考查不等式的性質(zhì),屬于基礎(chǔ)題.25.(2022·全國·高三專題練習)比較大?。篠KIPIF1<0______SKIPIF1<0(用“SKIPIF1<0”或“SKIPIF1<0”符號填空).【答案】SKIPIF1<0【分析】因為兩個數(shù)都是正數(shù),所以平方后,再做差比較大小.【詳解】解:SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,故答案為:SKIPIF1<026.(2022·浙江·高三專題練習)已知SKIPIF1<0,則SKIPIF1<0_______SKIPIF1<0.(用“>”或“<”填空)【答案】>【分析】作差,判斷差的符號可得答案.【詳解】因為SKIPIF1<0SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故答案為:>.27.(2022·全國·高三專題練習)已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍是___________.【答案】SKIPIF1<0【分析】根據(jù)不等式的性質(zhì)計算可得;【詳解】解:解:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的取值范圍是:SKIPIF1<0.故答案為:SKIPIF1<0.28.(2022·浙江·高三專題練習)已知SKIPIF1<0,則SKIPIF1<0的取值范圍是_____.【答案】SKIPIF1<0【分析】利用換元法,結(jié)合不等式的性質(zhì)進行求解即可.【詳解】設(shè)SKIPIF1<0,因此得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,因此SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<029.(2019·江蘇·高三專題練習)不等式SKIPIF1<0的解集是________.【答案】SKIPIF1<0【分析】先由不等式化為SKIPIF1<0,根據(jù)一元二次不等式的解法,即可求出結(jié)果.【詳解】因為不等式SKIPIF1<0等價于SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0;故原不等式的解集是SKIPIF1<0.故答案為:SKIPIF1<0【點睛】本題主要考查解不等式,熟記絕對值不等式的解法以及一元二次不等式的解法即可,屬于??碱}型.30.(2020·全國·高三專題練習)在SKIPIF1<0上定義運算SKIPIF1<0,若關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集為SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是_________.【答案】SKIPIF1<0【分析】根據(jù)定義的運算化簡原不等式,再結(jié)合二次函數(shù)的性質(zhì)即可求解.【詳解】因為SKIPIF1<0,不等式SKIPIF1<0SKIPIF1<0SKIPIF1<0恒成立,所以SKIPIF1<0,不等式SKIPIF1<0恒成立,所以SKIPIF1<0,不等式SKIPIF1<0恒成立,即SKIPIF1<0,不等式SKIPIF1<0恒成立,所以SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,所以實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論