版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
高中數(shù)學(xué)
人教A版(2019)
選擇性必修第一冊(cè)第三章圓錐曲線的方程
章末綜合知識(shí)網(wǎng)絡(luò)構(gòu)建知識(shí)網(wǎng)絡(luò)構(gòu)建典型例題
1.圓錐曲線的定義及應(yīng)用
典型例題
典型例題
【類(lèi)題通法】“回歸定義”解題的三點(diǎn)應(yīng)用應(yīng)用一:在求軌跡方程時(shí),若所求軌跡符合某種圓錐曲線的定義,則根據(jù)圓錐曲線的定義,寫(xiě)出所求的軌跡方程;應(yīng)用二:涉及橢圓、雙曲線上的點(diǎn)與兩個(gè)定點(diǎn)構(gòu)成的三角形問(wèn)題時(shí),常用定義結(jié)合解三角形的知識(shí)來(lái)解決;應(yīng)用三:在求有關(guān)拋物線的最值問(wèn)題時(shí),常利用定義把到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離,結(jié)合幾何圖形,利用幾何意義去解決.提醒:應(yīng)用定義解題時(shí)注意圓錐曲線定義中的限制條件.典型例題
典型例題
2.求圓錐曲線方程
典型例題
【類(lèi)題通法】求圓錐曲線方程的一般步驟一般求已知曲線類(lèi)型的曲線方程問(wèn)題,可采用“先定形,后定式,再定量”的步驟.(1)定形——指的是二次曲線的焦點(diǎn)位置與對(duì)稱(chēng)軸的位置.(2)定式——根據(jù)“形”設(shè)方程的形式,注意曲線系方程的應(yīng)用,如當(dāng)橢圓的焦點(diǎn)不確定在哪個(gè)坐標(biāo)軸上時(shí),可設(shè)方程為mx2+ny2=1(m>0,n>0).(3)定量——由題設(shè)中的條件找到“式”中待定系數(shù)的等量關(guān)系,通過(guò)解方程得到量的大小.典型例題
典型例題
3.圓錐曲線的性質(zhì)及應(yīng)用
典型例題
3.圓錐曲線的性質(zhì)及應(yīng)用
典型例題
【類(lèi)題通法】1.圓錐曲線的幾何性質(zhì)主要包括范圍、對(duì)稱(chēng)性、焦點(diǎn)、頂點(diǎn)、長(zhǎng)短軸(橢圓)、實(shí)虛軸(雙曲線)、漸近線(雙曲線)、離心率和準(zhǔn)線(拋物線).2.橢圓的離心率,雙曲線的離心率和漸近線,拋物線的焦點(diǎn)和準(zhǔn)線,都是??嫉男再|(zhì),要熟練掌握.
典型例題
4.圓錐曲線中的弦長(zhǎng)、中點(diǎn)弦問(wèn)題
典型例題
典型例題
【鞏固訓(xùn)練4】已知拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,又知此拋物線上一點(diǎn)A(4,m)到焦點(diǎn)的距離為6.(1)求此拋物線的方程;(2)若此拋物線方程與直線y=kx-2相交于不同的兩點(diǎn)A、B,且AB中點(diǎn)橫坐標(biāo)為2,求k的值.典型例題
典型例題
5.圓錐曲線中的定值、定點(diǎn)問(wèn)題
典型例題
典型例題
【類(lèi)題通法】圓錐曲線中的定值、定點(diǎn)問(wèn)題(1)定值問(wèn)題的常見(jiàn)類(lèi)型及解題策略①求代數(shù)式為定值.依題意設(shè)條件,得出與代數(shù)式參數(shù)有關(guān)的等式,代入代數(shù)式、化簡(jiǎn)即可得出定值.②求點(diǎn)到直線的距離為定值.利用點(diǎn)到直線的距離公式得出距離的解析式,再利用題設(shè)條件化簡(jiǎn)、變形求得.③求某線段長(zhǎng)度為定值.利用長(zhǎng)度公式求得解析式,再依據(jù)條件對(duì)解析式進(jìn)行化簡(jiǎn)、變形即可求得.(2)定點(diǎn)問(wèn)題的兩種解法①引進(jìn)參數(shù)法:引進(jìn)動(dòng)點(diǎn)的坐標(biāo)或動(dòng)線中系數(shù)為參數(shù)表示變化量,再研究變化的量與參數(shù)何時(shí)沒(méi)有關(guān)系,找到定點(diǎn).②特殊到一般法:根據(jù)動(dòng)點(diǎn)或動(dòng)線的特殊情況探索出定點(diǎn),再證明該定點(diǎn)與變量無(wú)關(guān).典型例題
典型例題
典型例題
6.圓錐曲線中的最值、范圍問(wèn)題
典型例題
典型例題
【類(lèi)題通法】最值問(wèn)題的常用解法有兩種(1)代數(shù)法:若題目的條件和結(jié)論能體現(xiàn)一種明確的函數(shù)關(guān)系,則可首先建立目標(biāo)函數(shù)再求這個(gè)函數(shù)的最值.求函數(shù)最值的常用方法有配方法、判別式法、換元法、均值不等式法、單調(diào)性法.(2)幾何法:若題目的條件與結(jié)論能明顯體現(xiàn)幾何特征及意義,則考慮利用幾何圖形性質(zhì)來(lái)解決.
典型例題
操作演練
素養(yǎng)提升
答案:1.D2.B3.D4.6(五)課堂小結(jié)知識(shí)總結(jié)學(xué)生反思(1)通過(guò)這節(jié)課,你學(xué)到了什么知識(shí)?
(2)在解決問(wèn)題時(shí),用到了哪些數(shù)學(xué)思想?作業(yè)布置完成教材——第145頁(yè)復(fù)習(xí)參考題3第1,2,
3
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)2025年專(zhuān)項(xiàng)發(fā)展規(guī)劃
- 長(zhǎng)春汽車(chē)工業(yè)高等專(zhuān)科學(xué)校《游戲動(dòng)態(tài)設(shè)計(jì)實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 食品衛(wèi)生安全監(jiān)管的挑戰(zhàn)與對(duì)策
- 專(zhuān)業(yè)基礎(chǔ)知識(shí)(給排水)-2021年注冊(cè)公用設(shè)備工程師(給排水)《專(zhuān)業(yè)基礎(chǔ)》真題
- 畢業(yè)生代表大學(xué)畢業(yè)典禮發(fā)言稿
- 讀書(shū)心得體會(huì)范文:《追求卓越》
- 二零二五年度高科技企業(yè)股份代持保密合作協(xié)議3篇
- 山西省晉中市祁縣2024-2025學(xué)年八年級(jí)上學(xué)期期末生物學(xué)試題(含答案)
- 二零二五年期市場(chǎng)營(yíng)銷(xiāo)推廣合同
- 遼陽(yáng)市小升初英語(yǔ)試卷單選題100道及答案
- 鋼構(gòu)樓板合同范例
- 2024-2025學(xué)年人教版(2024)信息技術(shù)四年級(jí)上冊(cè) 第11課 嘀嘀嗒嗒的秘密 說(shuō)課稿
- 2024中考物理真題匯編:電與磁(含解析)
- 物流管理概論 課件全套 王皓 第1-10章 物流與物流管理的基礎(chǔ)知識(shí) - 物流系統(tǒng)
- 蘇教版六年級(jí)上冊(cè)分?jǐn)?shù)四則混合運(yùn)算100題帶答案
- 2024年考研英語(yǔ)(一)真題及參考答案
- 醫(yī)療組長(zhǎng)競(jìng)聘
- 2024年業(yè)績(jī)換取股權(quán)的協(xié)議書(shū)模板
- 顳下頜關(guān)節(jié)疾?。谇活M面外科學(xué)課件)
- 工業(yè)自動(dòng)化設(shè)備維護(hù)保養(yǎng)指南
- 2024人教新版七年級(jí)上冊(cè)英語(yǔ)單詞英譯漢默寫(xiě)表
評(píng)論
0/150
提交評(píng)論