版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河北省邢臺(tái)市巨鹿縣二中2024屆高三下學(xué)期4月一??荚嚁?shù)學(xué)試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)(或)的圖象大致是()A. B. C. D.2.若時(shí),,則的取值范圍為()A. B. C. D.3.雙曲線x2a2A.y=±2x B.y=±3x4.設(shè)函數(shù)(,為自然對(duì)數(shù)的底數(shù)),定義在上的函數(shù)滿足,且當(dāng)時(shí),.若存在,且為函數(shù)的一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.5.復(fù)數(shù),是虛數(shù)單位,則下列結(jié)論正確的是A. B.的共軛復(fù)數(shù)為C.的實(shí)部與虛部之和為1 D.在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)位于第一象限6.若,滿足約束條件,則的最大值是()A. B. C.13 D.7.?dāng)?shù)列滿足,且,,則()A. B.9 C. D.78.已知平行于軸的直線分別交曲線于兩點(diǎn),則的最小值為()A. B. C. D.9.下列不等式正確的是()A. B.C. D.10.我們熟悉的卡通形象“哆啦A夢(mèng)”的長(zhǎng)寬比為.在東方文化中通常稱這個(gè)比例為“白銀比例”,該比例在設(shè)計(jì)和建筑領(lǐng)域有著廣泛的應(yīng)用.已知某電波塔自下而上依次建有第一展望臺(tái)和第二展望臺(tái),塔頂?shù)剿椎母叨扰c第二展望臺(tái)到塔底的高度之比,第二展望臺(tái)到塔底的高度與第一展望臺(tái)到塔底的高度之比皆等于“白銀比例”,若兩展望臺(tái)間高度差為100米,則下列選項(xiàng)中與該塔的實(shí)際高度最接近的是()A.400米 B.480米C.520米 D.600米11.已知,函數(shù)在區(qū)間內(nèi)沒(méi)有最值,給出下列四個(gè)結(jié)論:①在上單調(diào)遞增;②③在上沒(méi)有零點(diǎn);④在上只有一個(gè)零點(diǎn).其中所有正確結(jié)論的編號(hào)是()A.②④ B.①③ C.②③ D.①②④12.已知集合,,若AB,則實(shí)數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.從分別寫(xiě)有1,2,3,4的4張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,則抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率為_(kāi)_________.14.若點(diǎn)為點(diǎn)在平面上的正投影,則記.如圖,在棱長(zhǎng)為1的正方體中,記平面為,平面為,點(diǎn)是線段上一動(dòng)點(diǎn),.給出下列四個(gè)結(jié)論:①為的重心;②;③當(dāng)時(shí),平面;④當(dāng)三棱錐的體積最大時(shí),三棱錐外接球的表面積為.其中,所有正確結(jié)論的序號(hào)是________________.15.已知是等比數(shù)列,若,,且∥,則______.16.如圖,在復(fù)平面內(nèi),復(fù)數(shù),對(duì)應(yīng)的向量分別是,,則_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在等腰梯形中,AD∥BC,,,,,分別為,,的中點(diǎn),以為折痕將折起,使點(diǎn)到達(dá)點(diǎn)位置(平面).(1)若為直線上任意一點(diǎn),證明:MH∥平面;(2)若直線與直線所成角為,求二面角的余弦值.18.(12分)如圖,在四棱錐中,底面是直角梯形,,,,是正三角形,,是的中點(diǎn).(1)證明:;(2)求直線與平面所成角的正弦值.19.(12分)在四棱錐中,底面為直角梯形,,面.(1)在線段上是否存在點(diǎn),使面,說(shuō)明理由;(2)求二面角的余弦值.20.(12分)某芯片公司為制定下一年的研發(fā)投入計(jì)劃,需了解年研發(fā)資金投入量x(單位:億元)對(duì)年銷售額y(單位:億元)的影響.該公司對(duì)歷史數(shù)據(jù)進(jìn)行對(duì)比分析,建立了兩個(gè)函數(shù)模型:①y=α+βx2,②y=eλx+t,其中現(xiàn)該公司收集了近12年的年研發(fā)資金投入量xi和年銷售額yi的數(shù)據(jù),i=1,2,?,12,并對(duì)這些數(shù)據(jù)作了初步處理,得到了右側(cè)的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.令xyi=1i=1uv20667702004604.20i=1i=1i=1i=13125000215000.30814(1)設(shè)ui和yi的相關(guān)系數(shù)為r1,xi和(2)(i)根據(jù)(1)的選擇及表中數(shù)據(jù),建立y關(guān)于x的回歸方程(系數(shù)精確到0.01);(ii)若下一年銷售額y需達(dá)到90億元,預(yù)測(cè)下一年的研發(fā)資金投入量x是多少億元?附:①相關(guān)系數(shù)r=i=1n(xi-x②參考數(shù)據(jù):308=4×77,90≈9.4868,e21.(12分)已知數(shù)列中,a1=1,其前n項(xiàng)和為,且滿足.(1)求數(shù)列的通項(xiàng)公式;(2)記,若數(shù)列為遞增數(shù)列,求λ的取值范圍.22.(10分)百年大計(jì),教育為本.某校積極響應(yīng)教育部號(hào)召,不斷加大拔尖人才的培養(yǎng)力度,為清華、北大等排名前十的名校輸送更多的人才.該校成立特長(zhǎng)班進(jìn)行專項(xiàng)培訓(xùn).據(jù)統(tǒng)計(jì)有如下表格.(其中表示通過(guò)自主招生獲得降分資格的學(xué)生人數(shù),表示被清華、北大等名校錄取的學(xué)生人數(shù))年份(屆)2014201520162017201841495557638296108106123(1)通過(guò)畫(huà)散點(diǎn)圖發(fā)現(xiàn)與之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;(保留兩位有效數(shù)字)(2)若已知該校2019年通過(guò)自主招生獲得降分資格的學(xué)生人數(shù)為61人,預(yù)測(cè)2019年高考該??既嗣5娜藬?shù);(3)若從2014年和2018年考人名校的學(xué)生中采用分層抽樣的方式抽取出5個(gè)人回校宣傳,在選取的5個(gè)人中再選取2人進(jìn)行演講,求進(jìn)行演講的兩人是2018年畢業(yè)的人數(shù)的分布列和期望.參考公式:,參考數(shù)據(jù):,,,
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
確定函數(shù)的奇偶性,排除兩個(gè)選項(xiàng),再求時(shí)的函數(shù)值,再排除一個(gè),得正確選項(xiàng).【詳解】分析知,函數(shù)(或)為偶函數(shù),所以圖象關(guān)于軸對(duì)稱,排除B,C,當(dāng)時(shí),,排除D,故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,解題時(shí)可通過(guò)研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對(duì)稱性等,研究特殊的函數(shù)的值、函數(shù)值的正負(fù),以及函數(shù)值的變化趨勢(shì),排除錯(cuò)誤選項(xiàng),得正確結(jié)論.2、D【解析】
由題得對(duì)恒成立,令,然后分別求出即可得的取值范圍.【詳解】由題得對(duì)恒成立,令,在單調(diào)遞減,且,在上單調(diào)遞增,在上單調(diào)遞減,,又在單調(diào)遞增,,的取值范圍為.故選:D【點(diǎn)睛】本題主要考查了不等式恒成立問(wèn)題,導(dǎo)數(shù)的綜合應(yīng)用,考查了轉(zhuǎn)化與化歸的思想.求解不等式恒成立問(wèn)題,可采用參變量分離法去求解.3、A【解析】分析:根據(jù)離心率得a,c關(guān)系,進(jìn)而得a,b關(guān)系,再根據(jù)雙曲線方程求漸近線方程,得結(jié)果.詳解:∵e=因?yàn)闈u近線方程為y=±bax點(diǎn)睛:已知雙曲線方程x2a24、D【解析】
先構(gòu)造函數(shù),由題意判斷出函數(shù)的奇偶性,再對(duì)函數(shù)求導(dǎo),判斷其單調(diào)性,進(jìn)而可求出結(jié)果.【詳解】構(gòu)造函數(shù),因?yàn)?,所以,所以為奇函?shù),當(dāng)時(shí),,所以在上單調(diào)遞減,所以在R上單調(diào)遞減.因?yàn)榇嬖?,所以,所以,化?jiǎn)得,所以,即令,因?yàn)闉楹瘮?shù)的一個(gè)零點(diǎn),所以在時(shí)有一個(gè)零點(diǎn)因?yàn)楫?dāng)時(shí),,所以函數(shù)在時(shí)單調(diào)遞減,由選項(xiàng)知,,又因?yàn)?,所以要使在時(shí)有一個(gè)零點(diǎn),只需使,解得,所以a的取值范圍為,故選D.【點(diǎn)睛】本題主要考查函數(shù)與方程的綜合問(wèn)題,難度較大.5、D【解析】
利用復(fù)數(shù)的四則運(yùn)算,求得,在根據(jù)復(fù)數(shù)的模,復(fù)數(shù)與共軛復(fù)數(shù)的概念等即可得到結(jié)論.【詳解】由題意,則,的共軛復(fù)數(shù)為,復(fù)數(shù)的實(shí)部與虛部之和為,在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)位于第一象限,故選D.【點(diǎn)睛】復(fù)數(shù)代數(shù)形式的加減乘除運(yùn)算的法則是進(jìn)行復(fù)數(shù)運(yùn)算的理論依據(jù),加減運(yùn)算類似于多項(xiàng)式的合并同類項(xiàng),乘法法則類似于多項(xiàng)式乘法法則,除法運(yùn)算則先將除式寫(xiě)成分式的形式,再將分母實(shí)數(shù)化,其次要熟悉復(fù)數(shù)相關(guān)基本概念,如復(fù)數(shù)的實(shí)部為、虛部為、模為、對(duì)應(yīng)點(diǎn)為、共軛為.6、C【解析】
由已知畫(huà)出可行域,利用目標(biāo)函數(shù)的幾何意義求最大值.【詳解】解:表示可行域內(nèi)的點(diǎn)到坐標(biāo)原點(diǎn)的距離的平方,畫(huà)出不等式組表示的可行域,如圖,由解得即點(diǎn)到坐標(biāo)原點(diǎn)的距離最大,即.故選:.【點(diǎn)睛】本題考查線性規(guī)劃問(wèn)題,考查數(shù)形結(jié)合的數(shù)學(xué)思想以及運(yùn)算求解能力,屬于基礎(chǔ)題.7、A【解析】
先由題意可得數(shù)列為等差數(shù)列,再根據(jù),,可求出公差,即可求出.【詳解】數(shù)列滿足,則數(shù)列為等差數(shù)列,,,,,,,故選:.【點(diǎn)睛】本題主要考查了等差數(shù)列的性質(zhì)和通項(xiàng)公式的求法,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.8、A【解析】
設(shè)直線為,用表示出,,求出,令,利用導(dǎo)數(shù)求出單調(diào)區(qū)間和極小值、最小值,即可求出的最小值.【詳解】解:設(shè)直線為,則,,而滿足,那么設(shè),則,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以故選:.【點(diǎn)睛】本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用:求單調(diào)區(qū)間和極值、最值,考查化簡(jiǎn)整理的運(yùn)算能力,正確求導(dǎo)確定函數(shù)的最小值是關(guān)鍵,屬于中檔題.9、D【解析】
根據(jù),利用排除法,即可求解.【詳解】由,可排除A、B、C選項(xiàng),又由,所以.故選D.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),以及對(duì)數(shù)的比較大小問(wèn)題,其中解答熟記三角函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.10、B【解析】
根據(jù)題意,畫(huà)出幾何關(guān)系,結(jié)合各線段比例可先求得第一展望臺(tái)和第二展望臺(tái)的距離,進(jìn)而由比例即可求得該塔的實(shí)際高度.【詳解】設(shè)第一展望臺(tái)到塔底的高度為米,塔的實(shí)際高度為米,幾何關(guān)系如下圖所示:由題意可得,解得;且滿足,故解得塔高米,即塔高約為480米.故選:B【點(diǎn)睛】本題考查了對(duì)中國(guó)文化的理解與簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.11、A【解析】
先根據(jù)函數(shù)在區(qū)間內(nèi)沒(méi)有最值求出或.再根據(jù)已知求出,判斷函數(shù)的單調(diào)性和零點(diǎn)情況得解.【詳解】因?yàn)楹瘮?shù)在區(qū)間內(nèi)沒(méi)有最值.所以,或解得或.又,所以.令.可得.且在上單調(diào)遞減.當(dāng)時(shí),,且,所以在上只有一個(gè)零點(diǎn).所以正確結(jié)論的編號(hào)②④故選:A.【點(diǎn)睛】本題主要考查三角函數(shù)的圖象和性質(zhì),考查函數(shù)的零點(diǎn)問(wèn)題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.12、D【解析】
先化簡(jiǎn),再根據(jù),且AB求解.【詳解】因?yàn)?,又因?yàn)?,且AB,所以.故選:D【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
基本事件總數(shù),抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)包含的基本事件有10種,由此能求出抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率.【詳解】從分別寫(xiě)有1,2,3,4的4張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,基本事件總數(shù),抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)包含的基本事件有10種,分別為:,,,,,,,,,,則抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率為.故答案為:【點(diǎn)睛】本題考查古典概型概率的求法,考查運(yùn)算求解能力,求解時(shí)注意辨別概率的模型.14、①②③【解析】
①點(diǎn)在平面內(nèi)的正投影為點(diǎn),而正方體的體對(duì)角線與和它不相交的的面對(duì)角線垂直,所以直線垂直于平面,而為正三角形,可得為正三角形的重心,所以①是正確的;②取的中點(diǎn),連接,則點(diǎn)在平面的正投影在上,記為,而平面平面,所以,所以②正確;③若設(shè),則由可得,然后對(duì)應(yīng)邊成比例,可解,所以③正確;④由于,而的面積是定值,所以當(dāng)點(diǎn)到平面的距離最大時(shí),三棱錐的體積最大,而當(dāng)點(diǎn)與點(diǎn)重合時(shí),點(diǎn)到平面的距離最大,此時(shí)為棱長(zhǎng)為的正四面體,其外接球半徑,則球,所以④錯(cuò)誤.【詳解】因?yàn)椋B接,則有平面平面為正三角形,所以為正三角形的中心,也是的重心,所以①正確;由平面,可知平面平面,記,由,可得平面平面,則,所以②正確;若平面,則,設(shè)由得,易得,由,則,由得,,解得,所以③正確;當(dāng)與重合時(shí),最大,為棱長(zhǎng)為的正四面體,其外接球半徑,則球,所以④錯(cuò)誤.故答案為:①②③【點(diǎn)睛】此題考查立體幾何中的垂直、平行關(guān)系,求幾何體的體積,考查空間想象能力和推理能力,屬于難題.15、【解析】若,,且∥,則,由是等比數(shù)列,可知公比為..故答案為.16、【解析】試題分析:由坐標(biāo)系可知考點(diǎn):復(fù)數(shù)運(yùn)算三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析(2)【解析】
(1)根據(jù)中位線證明平面平面,即可證明MH∥平面;(2)以,,為,,軸建立空間直角坐標(biāo)系,找到點(diǎn)的坐標(biāo)代入公式即可計(jì)算二面角的余弦值.【詳解】(1)證明:連接,∵,,分別為,,的中點(diǎn),∴,又∵平面,平面,∴平面,同理,平面,∵平面,平面,,∴平面平面,∵平面,∴平面.(2)連接,在和中,由余弦定理可得,,由與互補(bǔ),,,可解得,于是,∴,,∵,直線與直線所成角為,∴,又,∴,即,∴平面,∴平面平面,∵為中點(diǎn),,∴平面,如圖所示,分別以,,為,,軸建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量為,∴,即.令,則,,可得平面的一個(gè)法向量為.又平面的一個(gè)法向量為,∴,∴二面角的余弦值為.【點(diǎn)睛】此題考查線面平行,建系通過(guò)坐標(biāo)求二面角等知識(shí)點(diǎn),屬于一般性題目.18、(1)見(jiàn)證明;(2)【解析】
(1)設(shè)是的中點(diǎn),連接、,先證明是平行四邊形,再證明平面,即(2)以為坐標(biāo)原點(diǎn),的方向?yàn)檩S的正方向,建空間直角坐標(biāo)系,分別計(jì)算各個(gè)點(diǎn)坐標(biāo),計(jì)算平面法向量,利用向量的夾角公式得到直線與平面所成角的正弦值.【詳解】(1)證明:設(shè)是的中點(diǎn),連接、,是的中點(diǎn),,,,,,,是平行四邊形,,,,,,,,由余弦定理得,,,,平面,,;(2)由(1)得平面,,平面平面,過(guò)點(diǎn)作,垂足為,平面,以為坐標(biāo)原點(diǎn),的方向?yàn)檩S的正方向,建立如圖的空間直角坐標(biāo)系,則,,,,設(shè)是平面的一個(gè)法向量,則,,令,則,,,直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查了線面垂直,線線垂直,利用空間直角坐標(biāo)系解決線面夾角問(wèn)題,意在考查學(xué)生的空間想象能力和計(jì)算能力.19、(1)存在;詳見(jiàn)解析(2)【解析】
(1)利用面面平行的性質(zhì)定理可得,為上靠近點(diǎn)的三等分點(diǎn),中點(diǎn),證明平面平面即得;(2)過(guò)作交于,可得兩兩垂直,以分別為軸建立空間直角坐標(biāo)系,求出長(zhǎng),寫(xiě)出各點(diǎn)坐標(biāo),用向量法求二面角.【詳解】解:(1)當(dāng)為上靠近點(diǎn)的三等分點(diǎn)時(shí),滿足面.證明如下,取中點(diǎn),連結(jié).即易得所以面面,即面.(2)過(guò)作交于面,兩兩垂直,以分別為軸建立空間直角坐標(biāo)系,如圖,設(shè)面法向量,則,即取同理可得面的法向量綜上可知銳二面角的余弦值為.【點(diǎn)睛】本題考查立體幾何中的存探索性命題,考查用空間向量法求二面角.線面平行問(wèn)題可通過(guò)面面平行解決,一定要掌握:立體幾何中線線平行、線面平行、面面平行是相互轉(zhuǎn)化、相互依存的.求空間角一般是建立空間直角坐標(biāo)系,用空間向量法求空間角.20、(1)模型y=eλx+t的擬合程度更好;(2)(i)v=0.02x+3.84【解析】
(1)由相關(guān)系數(shù)求出兩個(gè)系數(shù),比較大小可得;(2)(i)先建立U額R0關(guān)于x的線性回歸方程,從而得出y(ii)把y=90代入(i)中的回歸方程可得x值.【詳解】本小題主要考查回歸分析等基礎(chǔ)知識(shí),考查數(shù)據(jù)處理能力、運(yùn)算求解能力、抽象概括能力及應(yīng)用意識(shí),考查統(tǒng)計(jì)與概率思想、分類與整合思想,考查數(shù)學(xué)抽象、數(shù)學(xué)運(yùn)算、數(shù)學(xué)建模、數(shù)據(jù)分析等核心素養(yǎng),體現(xiàn)基礎(chǔ)性、綜合性與應(yīng)用性.解:(1)r1r2則r1<r(2)(i)先建立U額R0由y=eλx+t,得lny=t+λx由于λ=i=1t=所以U額R0關(guān)于x所以lny=0.02x+3.84(ii)下一年銷售額y需達(dá)到90億元,即y=90,代入y=e0.02x+3.84又
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 美術(shù)課程設(shè)計(jì)手繪
- 英文口語(yǔ)直播課程設(shè)計(jì)
- 窯洞課程設(shè)計(jì)
- 鏜刀課程設(shè)計(jì)
- 鸚鵡主題課程設(shè)計(jì)表
- 預(yù)算課程設(shè)計(jì)內(nèi)容
- 通信課程設(shè)計(jì)設(shè)計(jì)報(bào)告
- 閱讀與戲劇課程設(shè)計(jì)理解
- 越南語(yǔ)培訓(xùn)課程設(shè)計(jì)
- 紀(jì)昌學(xué)射課程設(shè)計(jì)
- 青島版(五年制)四年級(jí)下冊(cè)小學(xué)數(shù)學(xué)全冊(cè)導(dǎo)學(xué)案(學(xué)前預(yù)習(xí)單)
- 退學(xué)費(fèi)和解協(xié)議書(shū)模板
- 2024至2030年中國(guó)對(duì)氯甲苯行業(yè)市場(chǎng)全景調(diào)研及發(fā)展趨勢(shì)分析報(bào)告
- 智能教育輔助系統(tǒng)運(yùn)營(yíng)服務(wù)合同
- 心功能分級(jí)及護(hù)理
- DLT 572-2021 電力變壓器運(yùn)行規(guī)程
- 重慶育才中學(xué)2025屆化學(xué)九上期末教學(xué)質(zhì)量檢測(cè)試題含解析
- 成都市2022級(jí)(2025屆)高中畢業(yè)班摸底測(cè)試(零診)數(shù)學(xué)試卷(含答案)
- 【云南省中藥材出口現(xiàn)狀、問(wèn)題及對(duì)策11000字(論文)】
- 服裝板房管理制度
- 河北省興隆縣盛嘉恒信礦業(yè)有限公司李杖子硅石礦礦山地質(zhì)環(huán)境保護(hù)與治理恢復(fù)方案
評(píng)論
0/150
提交評(píng)論