山東省濟寧市達標名校2025屆高考適應性考試數(shù)學試卷含解析_第1頁
山東省濟寧市達標名校2025屆高考適應性考試數(shù)學試卷含解析_第2頁
山東省濟寧市達標名校2025屆高考適應性考試數(shù)學試卷含解析_第3頁
山東省濟寧市達標名校2025屆高考適應性考試數(shù)學試卷含解析_第4頁
山東省濟寧市達標名校2025屆高考適應性考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省濟寧市達標名校2025屆高考適應性考試數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.造紙術(shù)、印刷術(shù)、指南針、火藥被稱為中國古代四大發(fā)明,此說法最早由英國漢學家艾約瑟提出并為后來許多中國的歷史學家所繼承,普遍認為這四種發(fā)明對中國古代的政治,經(jīng)濟,文化的發(fā)展產(chǎn)生了巨大的推動作用.某小學三年級共有學生500名,隨機抽查100名學生并提問中國古代四大發(fā)明,能說出兩種發(fā)明的有45人,能說出3種及其以上發(fā)明的有32人,據(jù)此估計該校三級的500名學生中,對四大發(fā)明只能說出一種或一種也說不出的有()A.69人 B.84人 C.108人 D.115人2.已知函數(shù)為奇函數(shù),且,則()A.2 B.5 C.1 D.33.已知甲盒子中有個紅球,個藍球,乙盒子中有個紅球,個藍球,同時從甲乙兩個盒子中取出個球進行交換,(a)交換后,從甲盒子中取1個球是紅球的概率記為.(b)交換后,乙盒子中含有紅球的個數(shù)記為.則()A. B.C. D.4.已知向量,則是的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充要條件5.已知是平面內(nèi)互不相等的兩個非零向量,且與的夾角為,則的取值范圍是()A. B. C. D.6.我國古代典籍《周易》用“卦”描述萬物的變化.每一“重卦”由從下到上排列的6個爻組成,爻分為陽爻“——”和陰爻“——”.如圖就是一重卦.在所有重卦中隨機取一重卦,則該重卦至少有2個陽爻的概率是()A. B. C. D.7.若復數(shù)滿足,則(其中為虛數(shù)單位)的最大值為()A.1 B.2 C.3 D.48.數(shù)學中有許多形狀優(yōu)美、寓意美好的曲線,例如:四葉草曲線就是其中一種,其方程為.給出下列四個結(jié)論:①曲線有四條對稱軸;②曲線上的點到原點的最大距離為;③曲線第一象限上任意一點作兩坐標軸的垂線與兩坐標軸圍成的矩形面積最大值為;④四葉草面積小于.其中,所有正確結(jié)論的序號是()A.①② B.①③ C.①③④ D.①②④9.向量,,且,則()A. B. C. D.10.已知函數(shù)(其中,,)的圖象關(guān)于點成中心對稱,且與點相鄰的一個最低點為,則對于下列判斷:①直線是函數(shù)圖象的一條對稱軸;②點是函數(shù)的一個對稱中心;③函數(shù)與的圖象的所有交點的橫坐標之和為.其中正確的判斷是()A.①② B.①③ C.②③ D.①②③11.已知集合,將集合的所有元素從小到大一次排列構(gòu)成一個新數(shù)列,則()A.1194 B.1695 C.311 D.109512.已知數(shù)列的通項公式為,將這個數(shù)列中的項擺放成如圖所示的數(shù)陣.記為數(shù)陣從左至右的列,從上到下的行共個數(shù)的和,則數(shù)列的前2020項和為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在△ABC中,E為邊AC上一點,且,P為BE上一點,且滿足,則的最小值為______.14.已知是函數(shù)的極大值點,則的取值范圍是____________.15.已知三棱錐的四個頂點都在球O的球面上,,,,,E,F(xiàn)分別為,的中點,,則球O的體積為______.16.給出下列等式:,,,…請從中歸納出第個等式:______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為是橢圓的一個焦點,點,直線的斜率為1.(1)求橢圓的方程;(1)若過點的直線與橢圓交于兩點,線段的中點為,是否存在直線使得?若存在,求出的方程;若不存在,請說明理由.18.(12分)在直角坐標系中,直線l過點,且傾斜角為,以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為.求直線l的參數(shù)方程和曲線C的直角坐標方程,并判斷曲線C是什么曲線;設(shè)直線l與曲線C相交與M,N兩點,當,求的值.19.(12分)[選修4-4:極坐標與參數(shù)方程]在直角坐標系中,曲線的參數(shù)方程為(是參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程和曲線的直角坐標方程;(2)若射線與曲線交于,兩點,與曲線交于,兩點,求取最大值時的值20.(12分)如圖,平面四邊形為直角梯形,,,,將繞著翻折到.(1)為上一點,且,當平面時,求實數(shù)的值;(2)當平面與平面所成的銳二面角大小為時,求與平面所成角的正弦.21.(12分)如圖為某大江的一段支流,岸線與近似滿足∥,寬度為.圓為江中的一個半徑為的小島,小鎮(zhèn)位于岸線上,且滿足岸線,.現(xiàn)計劃建造一條自小鎮(zhèn)經(jīng)小島至對岸的水上通道(圖中粗線部分折線段,在右側(cè)),為保護小島,段設(shè)計成與圓相切.設(shè).(1)試將通道的長表示成的函數(shù),并指出定義域;(2)若建造通道的費用是每公里100萬元,則建造此通道最少需要多少萬元?22.(10分)已知數(shù)列是各項均為正數(shù)的等比數(shù)列,數(shù)列為等差數(shù)列,且,,.(1)求數(shù)列與的通項公式;(2)求數(shù)列的前項和;(3)設(shè)為數(shù)列的前項和,若對于任意,有,求實數(shù)的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

先求得名學生中,只能說出一種或一種也說不出的人數(shù),由此利用比例,求得名學生中對四大發(fā)明只能說出一種或一種也說不出的人數(shù).【詳解】在這100名學生中,只能說出一種或一種也說不出的有人,設(shè)對四大發(fā)明只能說出一種或一種也說不出的有人,則,解得人.故選:D【點睛】本小題主要考查利用樣本估計總體,屬于基礎(chǔ)題.2、B【解析】

由函數(shù)為奇函數(shù),則有,代入已知即可求得.【詳解】.故選:.【點睛】本題考查奇偶性在抽象函數(shù)中的應用,考查學生分析問題的能力,難度較易.3、A【解析】分析:首先需要去分析交換后甲盒中的紅球的個數(shù),對應的事件有哪些結(jié)果,從而得到對應的概率的大小,再者就是對隨機變量的值要分清,對應的概率要算對,利用公式求得其期望.詳解:根據(jù)題意有,如果交換一個球,有交換的都是紅球、交換的都是藍球、甲盒的紅球換的乙盒的藍球、甲盒的藍球交換的乙盒的紅球,紅球的個數(shù)就會出現(xiàn)三種情況;如果交換的是兩個球,有紅球換紅球、藍球換藍球、一藍一紅換一藍一紅、紅換藍、藍換紅、一藍一紅換兩紅、一藍一紅換亮藍,對應的紅球的個數(shù)就是五種情況,所以分析可以求得,故選A.點睛:該題考查的是有關(guān)隨機事件的概率以及對應的期望的問題,在解題的過程中,需要對其對應的事件弄明白,對應的概率會算,以及變量的可取值會分析是多少,利用期望公式求得結(jié)果.4、A【解析】

向量,,,則,即,或者-1,判斷出即可.【詳解】解:向量,,,則,即,或者-1,所以是或者的充分不必要條件,故選:A.【點睛】本小題主要考查充分、必要條件的判斷,考查向量平行的坐標表示,屬于基礎(chǔ)題.5、C【解析】試題分析:如下圖所示,則,因為與的夾角為,即,所以,設(shè),則,在三角形中,由正弦定理得,所以,所以,故選C.考點:1.向量加減法的幾何意義;2.正弦定理;3.正弦函數(shù)性質(zhì).6、C【解析】

利用組合的方法求所求的事件的對立事件,即該重卦沒有陽爻或只有1個陽爻的概率,再根據(jù)兩對立事件的概率和為1求解即可.【詳解】設(shè)“該重卦至少有2個陽爻”為事件.所有“重卦”共有種;“該重卦至少有2個陽爻”的對立事件是“該重卦沒有陽爻或只有1個陽爻”,其中,沒有陽爻(即6個全部是陰爻)的情況有1種,只有1個陽爻的情況有種,故,所以該重卦至少有2個陽爻的概率是.故選:C【點睛】本題主要考查了對立事件概率和為1的方法求解事件概率的方法.屬于基礎(chǔ)題.7、B【解析】

根據(jù)復數(shù)的幾何意義可知復數(shù)對應的點在以原點為圓心,1為半徑的圓上,再根據(jù)復數(shù)的幾何意義即可確定,即可得的最大值.【詳解】由知,復數(shù)對應的點在以原點為圓心,1為半徑的圓上,表示復數(shù)對應的點與點間的距離,又復數(shù)對應的點所在圓的圓心到的距離為1,所以.故選:B【點睛】本題考查了復數(shù)模的定義及其幾何意義應用,屬于基礎(chǔ)題.8、C【解析】

①利用之間的代換判斷出對稱軸的條數(shù);②利用基本不等式求解出到原點的距離最大值;③將面積轉(zhuǎn)化為的關(guān)系式,然后根據(jù)基本不等式求解出最大值;④根據(jù)滿足的不等式判斷出四葉草與對應圓的關(guān)系,從而判斷出面積是否小于.【詳解】①:當變?yōu)闀r,不變,所以四葉草圖象關(guān)于軸對稱;當變?yōu)闀r,不變,所以四葉草圖象關(guān)于軸對稱;當變?yōu)闀r,不變,所以四葉草圖象關(guān)于軸對稱;當變?yōu)闀r,不變,所以四葉草圖象關(guān)于軸對稱;綜上可知:有四條對稱軸,故正確;②:因為,所以,所以,所以,取等號時,所以最大距離為,故錯誤;③:設(shè)任意一點,所以圍成的矩形面積為,因為,所以,所以,取等號時,所以圍成矩形面積的最大值為,故正確;④:由②可知,所以四葉草包含在圓的內(nèi)部,因為圓的面積為:,所以四葉草的面積小于,故正確.故選:C.【點睛】本題考查曲線與方程的綜合運用,其中涉及到曲線的對稱性分析以及基本不等式的運用,難度較難.分析方程所表示曲線的對稱性,可通過替換方程中去分析證明.9、D【解析】

根據(jù)向量平行的坐標運算以及誘導公式,即可得出答案.【詳解】故選:D【點睛】本題主要考查了由向量平行求參數(shù)以及誘導公式的應用,屬于中檔題.10、C【解析】分析:根據(jù)最低點,判斷A=3,根據(jù)對稱中心與最低點的橫坐標求得周期T,再代入最低點可求得解析式為,依次判斷各選項的正確與否.詳解:因為為對稱中心,且最低點為,所以A=3,且由所以,將帶入得,所以由此可得①錯誤,②正確,③當時,,所以與有6個交點,設(shè)各個交點坐標依次為,則,所以③正確所以選C點睛:本題考查了根據(jù)條件求三角函數(shù)的解析式,通過求得的解析式進一步研究函數(shù)的性質(zhì),屬于中檔題.11、D【解析】

確定中前35項里兩個數(shù)列中的項數(shù),數(shù)列中第35項為70,這時可通過比較確定中有多少項可以插入這35項里面即可得,然后可求和.【詳解】時,,所以數(shù)列的前35項和中,有三項3,9,27,有32項,所以.故選:D.【點睛】本題考查數(shù)列分組求和,掌握等差數(shù)列和等比數(shù)列前項和公式是解題基礎(chǔ).解題關(guān)鍵是確定數(shù)列的前35項中有多少項是中的,又有多少項是中的.12、D【解析】

由題意,設(shè)每一行的和為,可得,繼而可求解,表示,裂項相消即可求解.【詳解】由題意,設(shè)每一行的和為故因此:故故選:D【點睛】本題考查了等差數(shù)列型數(shù)陣的求和,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】試題分析:根據(jù)題意有,因為三點共線,所以有,從而有,所以的最小值是.考點:向量的運算,基本不等式.【方法點睛】該題考查的是有關(guān)應用基本不等式求最值的問題,屬于中檔題目,在解題的過程中,關(guān)鍵步驟在于對題中條件的轉(zhuǎn)化,根據(jù)三點共線,結(jié)合向量的性質(zhì)可知,從而等價于已知兩個正數(shù)的整式形式和為定值,求分式形式和的最值的問題,兩式乘積,最后應用基本不等式求得結(jié)果,最后再加,得出最后的答案.14、【解析】

方法一:令,則,,當,時,,單調(diào)遞減,∴時,,,且,∴在上單調(diào)遞增,時,,,且,∴在上單調(diào)遞減,∴是函數(shù)的極大值點,∴滿足題意;當時,存在使得,即,又在上單調(diào)遞減,∴時,,,所以,這與是函數(shù)的極大值點矛盾.綜上,.方法二:依據(jù)極值的定義,要使是函數(shù)的極大值點,由知須在的左側(cè)附近,,即;在的右側(cè)附近,,即.易知,時,與相切于原點,所以根據(jù)與的圖象關(guān)系,可得.15、【解析】

可證,則為的外心,又則平面即可求出,的值,再由勾股定理求出外接球的半徑,最后根據(jù)體積公式計算可得.【詳解】解:,,,因為為的中點,所以為的外心,因為,所以點在內(nèi)的投影為的外心,所以平面,平面,所以,所以,又球心在上,設(shè),則,所以,所以球O體積,.故答案為:【點睛】本題考查多面體外接球體積的求法,考查空間想象能力與思維能力,考查計算能力,屬于中檔題.16、【解析】

通過已知的三個等式,找出規(guī)律,歸納出第個等式即可.【詳解】解:因為:,,,等式的右邊系數(shù)是2,且角是等比數(shù)列,公比為,則角滿足:第個等式中的角,所以;故答案為:.【點睛】本題主要考查歸納推理,注意已知表達式的特征是解題的關(guān)鍵,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(1)不存在,理由見解析【解析】

(1)利用離心率和過點,列出等式,即得解(1)設(shè)的方程為,與橢圓聯(lián)立,利用韋達定理表示中點N的坐標,用點坐標表示,利用韋達關(guān)系代入,得到關(guān)于k的等式,即可得解.【詳解】(1)由題意,可得解得則,故橢圓的方程為.(1)當直線的斜率不存在時,,不符合題意.當?shù)男甭蚀嬖跁r,設(shè)的方程為,聯(lián)立得,設(shè),則,,,即.設(shè),則,,,則,即,整理得,此方程無解,故的方程不存在.綜上所述,不存在直線使得.【點睛】本題考查了直線和橢圓綜合,考查了弦長和中點問題,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于較難題.18、(Ⅰ)曲線是焦點在軸上的橢圓;(Ⅱ).【解析】試題分析:(1)由題易知,直線的參數(shù)方程為,(為參數(shù)),;曲線的直角坐標方程為,橢圓;(2)將直線代入橢圓得到,所以,解得.試題解析:(Ⅰ)直線的參數(shù)方程為.曲線的直角坐標方程為,即,所以曲線是焦點在軸上的橢圓.(Ⅱ)將的參數(shù)方程代入曲線的直角坐標方程為得,,得,,19、(1)的極坐標方程為.曲線的直角坐標方程為.(2)【解析】

(1)先得到的一般方程,再由極坐標化直角坐標的公式得到一般方程,將代入得,得到曲線的直角坐標方程;(2)設(shè)點、的極坐標分別為,,將分別代入曲線、極坐標方程得:,,,之后進行化一,可得到最值,此時,可求解.【詳解】(1)由得,將代入得:,故曲線的極坐標方程為.由得,將代入得,故曲線的直角坐標方程為.(2)設(shè)點、的極坐標分別為,,將分別代入曲線、極坐標方程得:,,則,其中為銳角,且滿足,,當時,取最大值,此時,【點睛】這個題目考查了參數(shù)方程化為普通方程的方法,極坐標化為直角坐標的方法,以及極坐標中極徑的幾何意義,極徑代表的是曲線上的點到極點的距離,在參數(shù)方程和極坐標方程中,能表示距離的量一個是極徑,一個是t的幾何意義,其中極徑多數(shù)用于過極點的曲線,而t的應用更廣泛一些.20、(1);(2).【解析】

(1)連接交于點,連接,利用線面平行的性質(zhì)定理可推導出,然后利用平行線分線段成比例定理可求得的值;(2)取中點,連接、,過點作,則,作于,連接,推導出,,可得出為平面與平面所成的銳二面角,由此計算出、,并證明出平面,可得出直線與平面所成的角為,進而可求得與平面所成角的正弦值.【詳解】(1)連接交于點,連接,平面,平面,平面平面,,在梯形中,,則,,,,所以,;(2)取中點,連接、,過點作,則,作于,連接.為的中點,且,,且,所以,四邊形為平行四邊形,由于,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論