版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆廣東省揭陽一中、潮州金中高考考前模擬數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若復(fù)數(shù)()是純虛數(shù),則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知某批零件的長(zhǎng)度誤差(單位:毫米)服從正態(tài)分布,從中隨機(jī)取一件,其長(zhǎng)度誤差落在區(qū)間(3,6)內(nèi)的概率為()(附:若隨機(jī)變量ξ服從正態(tài)分布,則,.)A.4.56% B.13.59% C.27.18% D.31.74%3.設(shè)M是邊BC上任意一點(diǎn),N為AM的中點(diǎn),若,則的值為()A.1 B. C. D.4.過拋物線的焦點(diǎn)作直線與拋物線在第一象限交于點(diǎn)A,與準(zhǔn)線在第三象限交于點(diǎn)B,過點(diǎn)作準(zhǔn)線的垂線,垂足為.若,則()A. B. C. D.5.已知為等差數(shù)列,若,,則()A.1 B.2 C.3 D.66.函數(shù)的一個(gè)單調(diào)遞增區(qū)間是()A. B. C. D.7.復(fù)數(shù)的實(shí)部與虛部相等,其中為虛部單位,則實(shí)數(shù)()A.3 B. C. D.8.已知數(shù)列滿足,且,則的值是()A. B. C.4 D.9.已知雙曲線的一條漸近線經(jīng)過圓的圓心,則雙曲線的離心率為()A. B. C. D.210.設(shè)為虛數(shù)單位,復(fù)數(shù),則實(shí)數(shù)的值是()A.1 B.-1 C.0 D.211.集合,則()A. B. C. D.12.已知雙曲線C:1(a>0,b>0)的焦距為8,一條漸近線方程為,則C為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)常數(shù),如果的二項(xiàng)展開式中項(xiàng)的系數(shù)為-80,那么______.14.已知,若,則________.15.設(shè)函數(shù),則______.16.在二項(xiàng)式的展開式中,的系數(shù)為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱柱中,是邊長(zhǎng)為2的等邊三角形,,,.(1)證明:平面平面;(2),分別是,的中點(diǎn),是線段上的動(dòng)點(diǎn),若二面角的平面角的大小為,試確定點(diǎn)的位置.18.(12分)設(shè)函數(shù)().(1)討論函數(shù)的單調(diào)性;(2)若關(guān)于x的方程有唯一的實(shí)數(shù)解,求a的取值范圍.19.(12分)已知函數(shù)與的圖象關(guān)于直線對(duì)稱.(為自然對(duì)數(shù)的底數(shù))(1)若的圖象在點(diǎn)處的切線經(jīng)過點(diǎn),求的值;(2)若不等式恒成立,求正整數(shù)的最小值.20.(12分)已知離心率為的橢圓經(jīng)過點(diǎn).(1)求橢圓的方程;(2)薦橢圓的右焦點(diǎn)為,過點(diǎn)的直線與橢圓分別交于,若直線、、的斜率成等差數(shù)列,請(qǐng)問的面積是否為定值?若是,求出此定值;若不是,請(qǐng)說明理由.21.(12分)數(shù)列滿足,且.(1)證明:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.22.(10分)已知矩形紙片中,,將矩形紙片的右下角沿線段折疊,使矩形的頂點(diǎn)B落在矩形的邊上,記該點(diǎn)為E,且折痕的兩端點(diǎn)M,N分別在邊上.設(shè),的面積為S.(1)將l表示成θ的函數(shù),并確定θ的取值范圍;(2)求l的最小值及此時(shí)的值;(3)問當(dāng)θ為何值時(shí),的面積S取得最小值?并求出這個(gè)最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
化簡(jiǎn)復(fù)數(shù),由它是純虛數(shù),求得,從而確定對(duì)應(yīng)的點(diǎn)的坐標(biāo).【詳解】是純虛數(shù),則,,,對(duì)應(yīng)點(diǎn)為,在第二象限.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查復(fù)數(shù)的概念與幾何意義.本題屬于基礎(chǔ)題.2、B【解析】試題分析:由題意故選B.考點(diǎn):正態(tài)分布3、B【解析】
設(shè),通過,再利用向量的加減運(yùn)算可得,結(jié)合條件即可得解.【詳解】設(shè),則有.又,所以,有.故選B.【點(diǎn)睛】本題考查了向量共線及向量運(yùn)算知識(shí),利用向量共線及向量運(yùn)算知識(shí),用基底向量向量來表示所求向量,利用平面向量表示法唯一來解決問題.4、C【解析】
需結(jié)合拋物線第一定義和圖形,得為等腰三角形,設(shè)準(zhǔn)線與軸的交點(diǎn)為,過點(diǎn)作,再由三角函數(shù)定義和幾何關(guān)系分別表示轉(zhuǎn)化出,,結(jié)合比值與正切二倍角公式化簡(jiǎn)即可【詳解】如圖,設(shè)準(zhǔn)線與軸的交點(diǎn)為,過點(diǎn)作.由拋物線定義知,所以,,,,所以.故選:C【點(diǎn)睛】本題考查拋物線的幾何性質(zhì),三角函數(shù)的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于中檔題5、B【解析】
利用等差數(shù)列的通項(xiàng)公式列出方程組,求出首項(xiàng)和公差,由此能求出.【詳解】∵{an}為等差數(shù)列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故選:B.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.6、D【解析】
利用同角三角函數(shù)的基本關(guān)系式、二倍角公式和輔助角公式化簡(jiǎn)表達(dá)式,再根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)區(qū)間,由此確定正確選項(xiàng).【詳解】因?yàn)?,由單調(diào)遞增,則(),解得(),當(dāng)時(shí),D選項(xiàng)正確.C選項(xiàng)是遞減區(qū)間,A,B選項(xiàng)中有部分增區(qū)間部分減區(qū)間.故選:D【點(diǎn)睛】本小題考查三角函數(shù)的恒等變換,三角函數(shù)的圖象與性質(zhì)等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,數(shù)形結(jié)合思想,應(yīng)用意識(shí).7、B【解析】
利用乘法運(yùn)算化簡(jiǎn)復(fù)數(shù)即可得到答案.【詳解】由已知,,所以,解得.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)的概念及復(fù)數(shù)的乘法運(yùn)算,考查學(xué)生的基本計(jì)算能力,是一道容易題.8、B【解析】由,可得,所以數(shù)列是公比為的等比數(shù)列,所以,則,則,故選B.點(diǎn)睛:本題考查了等比數(shù)列的概念,等比數(shù)列的通項(xiàng)公式及等比數(shù)列的性質(zhì)的應(yīng)用,試題有一定的技巧,屬于中檔試題,解決這類問題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運(yùn)用,尤其需要注意的是,等比數(shù)列的性質(zhì)和在使用等比數(shù)列的前n項(xiàng)和公式時(shí),應(yīng)該要分類討論,有時(shí)還應(yīng)善于運(yùn)用整體代換思想簡(jiǎn)化運(yùn)算過程.9、B【解析】
求出圓心,代入漸近線方程,找到的關(guān)系,即可求解.【詳解】解:,一條漸近線,故選:B【點(diǎn)睛】利用的關(guān)系求雙曲線的離心率,是基礎(chǔ)題.10、A【解析】
根據(jù)復(fù)數(shù)的乘法運(yùn)算化簡(jiǎn),由復(fù)數(shù)的意義即可求得的值.【詳解】復(fù)數(shù),由復(fù)數(shù)乘法運(yùn)算化簡(jiǎn)可得,所以由復(fù)數(shù)定義可知,解得,故選:A.【點(diǎn)睛】本題考查了復(fù)數(shù)的乘法運(yùn)算,復(fù)數(shù)的意義,屬于基礎(chǔ)題.11、D【解析】
利用交集的定義直接計(jì)算即可.【詳解】,故,故選:D.【點(diǎn)睛】本題考查集合的交運(yùn)算,注意常見集合的符號(hào)表示,本題屬于基礎(chǔ)題.12、A【解析】
由題意求得c與的值,結(jié)合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線C的方程為.故選:A.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單性質(zhì),屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用二項(xiàng)式定理的通項(xiàng)公式即可得出.【詳解】的二項(xiàng)展開式的通項(xiàng)公式:,令,解得.∴,解得.故答案為:-2.【點(diǎn)睛】本小題主要考查根據(jù)二項(xiàng)式展開式的系數(shù)求參數(shù),屬于基礎(chǔ)題.14、1【解析】
由題意先求得的值,可得,再令,可得結(jié)論.【詳解】已知,,,,令,可得,故答案為:1.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,注意根據(jù)題意,分析所給代數(shù)式的特點(diǎn),通過給二項(xiàng)式的賦值,求展開式的系數(shù)和,可以簡(jiǎn)便的求出答案,屬于基礎(chǔ)題.15、【解析】
由自變量所在定義域范圍,代入對(duì)應(yīng)解析式,再由對(duì)數(shù)加減法運(yùn)算法則與對(duì)數(shù)恒等式關(guān)系分別求值再相加,即為答案.【詳解】因?yàn)楹瘮?shù),則因?yàn)?,則故故答案為:【點(diǎn)睛】本題考查分段函數(shù)求值,屬于簡(jiǎn)單題.16、60【解析】
直接利用二項(xiàng)式定理計(jì)算得到答案.【詳解】二項(xiàng)式的展開式通項(xiàng)為:,取,則的系數(shù)為.故答案為:.【點(diǎn)睛】本題考查了二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)為線段上靠近點(diǎn)的四等分點(diǎn),且坐標(biāo)為【解析】
(1)先通過線面垂直的判定定理證明平面,再根據(jù)面面垂直的判定定理即可證明;(2)分析位置關(guān)系并建立空間直角坐標(biāo)系,根據(jù)二面角的余弦值與平面法向量夾角的余弦值之間的關(guān)系,即可計(jì)算出的坐標(biāo)從而位置可確定.【詳解】(1)證明:因?yàn)?,,,所以,?又因?yàn)?,,所以,,所以平?因?yàn)槠矫?,所以平面平?(2)解:連接,因?yàn)?,是的中點(diǎn),所以.由(1)知,平面平面,所以平面.以為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則平面的一個(gè)法向量是,,,.設(shè),,,,代入上式得,,,所以.設(shè)平面的一個(gè)法向量為,,,由,得.令,得.因?yàn)槎娼堑钠矫娼堑拇笮?,所以,即,解?所以點(diǎn)為線段上靠近點(diǎn)的四等分點(diǎn),且坐標(biāo)為.【點(diǎn)睛】本題考查面面垂直的證明以及利用向量法求解二面角有關(guān)的問題,難度一般.(1)證明面面垂直,可通過先證明線面垂直,再證明面面垂直;(2)二面角的余弦值不一定等于平面法向量夾角的余弦值,要注意結(jié)合圖形分析.18、(1)當(dāng)時(shí),遞增區(qū)間時(shí),無遞減區(qū)間,當(dāng)時(shí),遞增區(qū)間時(shí),遞減區(qū)間時(shí);(2)或.【解析】
(1)求出,對(duì)分類討論,先考慮(或)恒成立的范圍,并以此作為的分類標(biāo)準(zhǔn),若不恒成立,求解,即可得出結(jié)論;(2)有解,即,令,轉(zhuǎn)化求函數(shù)只有一個(gè)實(shí)數(shù)解,根據(jù)(1)中的結(jié)論,即可求解.【詳解】(1),當(dāng)時(shí),恒成立,當(dāng)時(shí),,綜上,當(dāng)時(shí),遞增區(qū)間時(shí),無遞減區(qū)間,當(dāng)時(shí),遞增區(qū)間時(shí),遞減區(qū)間時(shí);(2),令,原方程只有一個(gè)解,只需只有一個(gè)解,即求只有一個(gè)零點(diǎn)時(shí),的取值范圍,由(1)得當(dāng)時(shí),在單調(diào)遞增,且,函數(shù)只有一個(gè)零點(diǎn),原方程只有一個(gè)解,當(dāng)時(shí),由(1)得在出取得極小值,也是最小值,當(dāng)時(shí),,此時(shí)函數(shù)只有一個(gè)零點(diǎn),原方程只有一個(gè)解,當(dāng)且遞增區(qū)間時(shí),遞減區(qū)間時(shí);,當(dāng),有兩個(gè)零點(diǎn),即原方程有兩個(gè)解,不合題意,所以的取值范圍是或.【點(diǎn)睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到單調(diào)性、零點(diǎn)、極值最值,考查分類討論和等價(jià)轉(zhuǎn)化思想,屬于中檔題.19、(1)e;(2)2.【解析】
(1)根據(jù)反函數(shù)的性質(zhì),得出,再利用導(dǎo)數(shù)的幾何意義,求出曲線在點(diǎn)處的切線為,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出單調(diào)性,即可得出的值;(2)設(shè),求導(dǎo),求出的單調(diào)性,從而得出最大值為,結(jié)合恒成立的性質(zhì),得出正整數(shù)的最小值.【詳解】(1)根據(jù)題意,與的圖象關(guān)于直線對(duì)稱,所以函數(shù)的圖象與互為反函數(shù),則,,設(shè)點(diǎn),,又,當(dāng)時(shí),,曲線在點(diǎn)處的切線為,即,代入點(diǎn),得,即,構(gòu)造函數(shù),當(dāng)時(shí),,當(dāng)時(shí),,且,當(dāng)時(shí),單調(diào)遞增,而,故存在唯一的實(shí)數(shù)根.(2)由于不等式恒成立,可設(shè),所以,令,得.所以當(dāng)時(shí),;當(dāng)時(shí),,因此函數(shù)在是增函數(shù),在是減函數(shù).故函數(shù)的最大值為.令,因?yàn)?,,又因?yàn)樵谑菧p函數(shù).所以當(dāng)時(shí),.所以正整數(shù)的最小值為2.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義和利用導(dǎo)數(shù)解決恒成立問題,涉及到單調(diào)性、構(gòu)造函數(shù)法等,考查函數(shù)思想和計(jì)算能力.20、(1);(2)是,【解析】
(1)根據(jù)及可得,再將點(diǎn)代入橢圓的方程與聯(lián)立解出,即可求出橢圓的方程;(2)可設(shè)所在直線的方程為,,,,將直線的方程與橢圓的方程聯(lián)立,用根與系數(shù)的關(guān)系求出,然后將直線、、的斜率、、分別用表示,利用可求出,從而可確定點(diǎn)恒在一條直線上,結(jié)合圖形即可求出的面積.【詳解】(1)因?yàn)闄E圓的離心率為,所以,即,又,所以,①因?yàn)辄c(diǎn)在橢圓上,所以,②由①②解得,所以橢圓C的方程為.(1)可知,,可設(shè)所在直線的方程為,由,得,設(shè),,,則,,設(shè)直線、、的斜率分別為、、,因?yàn)槿c(diǎn)共線,所以,即,所以,又,因?yàn)橹本€、、的斜率成等差數(shù)列,所以,即,化簡(jiǎn)得,即點(diǎn)恒在一條直線上,又因?yàn)橹本€方程為,且,所以是定值.【點(diǎn)睛】本題主要考查橢圓的方程,直線與橢圓的位置關(guān)系及橢圓中的定值問題,屬于中檔題.21、(1)證明見解析,;(2)【解析】
(1)利用,推出,然后利用等差數(shù)列的通項(xiàng)公式,即可求解;(2)由(1)知,利用裂項(xiàng)法,即可求解數(shù)列的前n項(xiàng)和.【詳解】(1)由題意,數(shù)列滿足且可得,即,所以數(shù)列是公差,首項(xiàng)的等差數(shù)列,故,所以.(2)由(1)知,所以數(shù)列的前n項(xiàng)和:==【點(diǎn)睛】本題主要考查了等差數(shù)列的通項(xiàng)公式,以及“裂項(xiàng)法”求解數(shù)列的前n項(xiàng)和,其中解答中熟記等差數(shù)列的定義和通項(xiàng)公式,合理利用“裂項(xiàng)法”求和是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.22、(1)(2),的最小值為.(3)時(shí),面積取最小值為【解析】
(1),利用三角函數(shù)定義分別表示,且,即可得到關(guān)于的解析式;,,則,即可得到的范圍;(2)由(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 直筒模具設(shè)計(jì)課程設(shè)計(jì)
- 說明文課程設(shè)計(jì)
- 課程設(shè)計(jì)宿舍供電
- 課程設(shè)計(jì)壓縮包
- 2025年度科技園區(qū)物業(yè)房屋租賃管理服務(wù)協(xié)議3篇
- 2025年小學(xué)班主任班級(jí)工作總結(jié)范文(2篇)
- 2025年事業(yè)單位年檢工作年終總結(jié)模版(2篇)
- 通信原理課程設(shè)計(jì)實(shí)驗(yàn)
- 二零二五年度數(shù)據(jù)中心電力需求響應(yīng)服務(wù)合同2篇
- 二零二五年度建筑垃圾資源化處理質(zhì)量合同3篇
- 2025年考研政治全套復(fù)習(xí)題庫及答案(全冊(cè)完整版)
- 新人教版小學(xué)英語五年級(jí)下冊(cè)單詞默寫版
- 3《歡歡喜喜慶國(guó)慶》說課稿-2024-2025學(xué)年道德與法治二年級(jí)上冊(cè)統(tǒng)編版
- 蓄勢(shì)聚能籌遠(yuǎn)略揚(yáng)帆破浪啟新航-在2025年務(wù)虛會(huì)上的講話提綱
- 先進(jìn)集體發(fā)言稿
- 學(xué)生寒假心理健康教育心理調(diào)試過健康寒假課件
- 八年級(jí)地理(下冊(cè)星球版)復(fù)習(xí)提綱
- 新建3000只肉羊養(yǎng)殖基地建設(shè)項(xiàng)目可行性研究報(bào)告
- 山東省濟(jì)南市2023-2024學(xué)年高二上學(xué)期期末考試生物試題 附答案
- DB32T 3292-2017 大跨徑橋梁鋼橋面環(huán)氧瀝青混凝土鋪裝養(yǎng)護(hù)技術(shù)規(guī)程
- 形容詞副詞(專項(xiàng)訓(xùn)練)-2023年中考英語二輪復(fù)習(xí)
評(píng)論
0/150
提交評(píng)論