江蘇省無錫市第三高級中學2025屆高考臨考沖刺數(shù)學試卷含解析_第1頁
江蘇省無錫市第三高級中學2025屆高考臨考沖刺數(shù)學試卷含解析_第2頁
江蘇省無錫市第三高級中學2025屆高考臨考沖刺數(shù)學試卷含解析_第3頁
江蘇省無錫市第三高級中學2025屆高考臨考沖刺數(shù)學試卷含解析_第4頁
江蘇省無錫市第三高級中學2025屆高考臨考沖刺數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

江蘇省無錫市第三高級中學2025屆高考臨考沖刺數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,內(nèi)角A,B,C所對的邊分別為a,b,c,且.若,的面積為,則()A.5 B. C.4 D.162.過直線上一點作圓的兩條切線,,,為切點,當直線,關于直線對稱時,()A. B. C. D.3.已知復數(shù)為虛數(shù)單位),則z的虛部為()A.2 B. C.4 D.4.復數(shù)(i是虛數(shù)單位)在復平面內(nèi)對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知數(shù)列滿足,(),則數(shù)列的通項公式()A. B. C. D.6.若為虛數(shù)單位,則復數(shù)在復平面上對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.從某市的中學生中隨機調(diào)查了部分男生,獲得了他們的身高數(shù)據(jù),整理得到如下頻率分布直方圖:根據(jù)頻率分布直方圖,可知這部分男生的身高的中位數(shù)的估計值為A. B.C. D.8.若點(2,k)到直線5x-12y+6=0的距離是4,則k的值是()A.1 B.-3 C.1或 D.-3或9.已知數(shù)列滿足,且成等比數(shù)列.若的前n項和為,則的最小值為()A. B. C. D.10.數(shù)列滿足:,則數(shù)列前項的和為A. B. C. D.11.已知函數(shù)(e為自然對數(shù)底數(shù)),若關于x的不等式有且只有一個正整數(shù)解,則實數(shù)m的最大值為()A. B. C. D.12.若集合,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若雙曲線C:(,)的頂點到漸近線的距離為,則的最小值________.14.已知正方體ABCD-A1B1C1D1棱長為2,點P是上底面15.已知以x±2y=0為漸近線的雙曲線經(jīng)過點,則該雙曲線的標準方程為________.16.設平面向量與的夾角為,且,,則的取值范圍為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)記無窮數(shù)列的前項中最大值為,最小值為,令,則稱是“極差數(shù)列”.(1)若,求的前項和;(2)證明:的“極差數(shù)列”仍是;(3)求證:若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.18.(12分)已知數(shù)列和,前項和為,且,是各項均為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和.19.(12分)已知函數(shù),.(1)求曲線在點處的切線方程;(2)求函數(shù)的極小值;(3)求函數(shù)的零點個數(shù).20.(12分)已知橢圓的左右焦點分別為,焦距為4,且橢圓過點,過點且不平行于坐標軸的直線交橢圓與兩點,點關于軸的對稱點為,直線交軸于點.(1)求的周長;(2)求面積的最大值.21.(12分)已知函數(shù),.(1)若不等式對恒成立,求的最小值;(2)證明:.(3)設方程的實根為.令若存在,,,使得,證明:.22.(10分)在平面直角坐標系中,已知拋物線的焦點為,準線為,是拋物線上上一點,且點的橫坐標為,.(1)求拋物線的方程;(2)過點的直線與拋物線交于、兩點,過點且與直線垂直的直線與準線交于點,設的中點為,若、、四點共圓,求直線的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據(jù)正弦定理邊化角以及三角函數(shù)公式可得,再根據(jù)面積公式可求得,再代入余弦定理求解即可.【詳解】中,,由正弦定理得,又,∴,又,∴,∴,又,∴.∵,∴,∵,∴由余弦定理可得,∴,可得.故選:C【點睛】本題主要考查了解三角形中正余弦定理與面積公式的運用,屬于中檔題.2、C【解析】

判斷圓心與直線的關系,確定直線,關于直線對稱的充要條件是與直線垂直,從而等于到直線的距離,由切線性質(zhì)求出,得,從而得.【詳解】如圖,設圓的圓心為,半徑為,點不在直線上,要滿足直線,關于直線對稱,則必垂直于直線,∴,設,則,,∴,.故選:C.【點睛】本題考查直線與圓的位置關系,考查直線的對稱性,解題關鍵是由圓的兩條切線關于直線對稱,得出與直線垂直,從而得就是圓心到直線的距離,這樣在直角三角形中可求得角.3、A【解析】

對復數(shù)進行乘法運算,并計算得到,從而得到虛部為2.【詳解】因為,所以z的虛部為2.【點睛】本題考查復數(shù)的四則運算及虛部的概念,計算過程要注意.4、B【解析】

利用復數(shù)的四則運算以及幾何意義即可求解.【詳解】解:,則復數(shù)(i是虛數(shù)單位)在復平面內(nèi)對應的點的坐標為:,位于第二象限.故選:B.【點睛】本題考查了復數(shù)的四則運算以及復數(shù)的幾何意義,屬于基礎題.5、A【解析】

利用數(shù)列的遞推關系式,通過累加法求解即可.【詳解】數(shù)列滿足:,,可得以上各式相加可得:,故選:.【點睛】本題考查數(shù)列的遞推關系式的應用,數(shù)列累加法以及通項公式的求法,考查計算能力.6、D【解析】

根據(jù)復數(shù)的運算,化簡得到,再結(jié)合復數(shù)的表示,即可求解,得到答案.【詳解】由題意,根據(jù)復數(shù)的運算,可得,所對應的點為位于第四象限.故選D.【點睛】本題主要考查了復數(shù)的運算,以及復數(shù)的幾何意義,其中解答中熟記復數(shù)的運算法則,準確化簡復數(shù)為代數(shù)形式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.7、C【解析】

由題可得,解得,則,,所以這部分男生的身高的中位數(shù)的估計值為,故選C.8、D【解析】

由題得,解方程即得k的值.【詳解】由題得,解方程即得k=-3或.故答案為:D【點睛】(1)本題主要考查點到直線的距離公式,意在考查學生對該知識的掌握水平和計算推理能力.(2)點到直線的距離.9、D【解析】

利用等比中項性質(zhì)可得等差數(shù)列的首項,進而求得,再利用二次函數(shù)的性質(zhì),可得當或時,取到最小值.【詳解】根據(jù)題意,可知為等差數(shù)列,公差,由成等比數(shù)列,可得,∴,解得.∴.根據(jù)單調(diào)性,可知當或時,取到最小值,最小值為.故選:D.【點睛】本題考查等差數(shù)列通項公式、等比中項性質(zhì)、等差數(shù)列前項和的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意當或時同時取到最值.10、A【解析】分析:通過對an﹣an+1=2anan+1變形可知,進而可知,利用裂項相消法求和即可.詳解:∵,∴,又∵=5,∴,即,∴,∴數(shù)列前項的和為,故選A.點睛:裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結(jié)構(gòu)特點,常見的裂項技巧:(1);(2);(3);(4);此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導致計算結(jié)果錯誤.11、A【解析】

若不等式有且只有一個正整數(shù)解,則的圖象在圖象的上方只有一個正整數(shù)值,利用導數(shù)求出的最小值,分別畫出與的圖象,結(jié)合圖象可得.【詳解】解:,∴,設,∴,當時,,函數(shù)單調(diào)遞增,當時,,函數(shù)單調(diào)遞減,∴,當時,,當,,函數(shù)恒過點,分別畫出與的圖象,如圖所示,,若不等式有且只有一個正整數(shù)解,則的圖象在圖象的上方只有一個正整數(shù)值,∴且,即,且∴,故實數(shù)m的最大值為,故選:A【點睛】本題考查考查了不等式恒有一正整數(shù)解問題,考查了利用導數(shù)研究函數(shù)的單調(diào)性,考查了數(shù)形結(jié)合思想,考查了數(shù)學運算能力.12、A【解析】

先確定集合中的元素,然后由交集定義求解.【詳解】,.故選:A.【點睛】本題考查求集合的交集運算,掌握交集定義是解題關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)雙曲線的方程求出其中一條漸近線,頂點,再利用點到直線的距離公式可得,由,利用基本不等式即可求解.【詳解】由雙曲線C:(,,可得一條漸近線,一個頂點,所以,解得,則,當且僅當時,取等號,所以的最小值為.故答案為:【點睛】本題考查了雙曲線的幾何性質(zhì)、點到直線的距離公式、基本不等式求最值,注意驗證等號成立的條件,屬于基礎題.14、π.【解析】

設三棱錐P-ABC的外接球為球O',分別取AC、A1C1的中點O、O1,先確定球心O'在線段AC和A1C1中點的連線上,先求出球O【詳解】如圖所示,設三棱錐P-ABC的外接球為球O'分別取AC、A1C1的中點O、O1由于正方體ABCD-A則△ABC的外接圓的半徑為OA=2設球O的半徑為R,則4πR2=所以,OO則O而點P在上底面A1B1由于O'P=R=41因此,點P所構(gòu)成的圖形的面積為π×O【點睛】本題考查三棱錐的外接球的相關問題,根據(jù)立體幾何中的線段關系求動點的軌跡,屬于中檔題.15、【解析】

設雙曲線方程為,代入點,計算得到答案.【詳解】雙曲線漸近線為,則設雙曲線方程為:,代入點,則.故雙曲線方程為:.故答案為:.【點睛】本題考查了根據(jù)漸近線求雙曲線,設雙曲線方程為是解題的關鍵.16、【解析】

根據(jù)已知條件計算出,結(jié)合得出,利用基本不等式可得出的取值范圍,利用平面向量的數(shù)量積公式可求得的取值范圍,進而可得出的取值范圍.【詳解】,,,由得,,由基本不等式可得,,,,,因此,的取值范圍為.故答案為:.【點睛】本題考查利用向量的模求解平面向量夾角的取值范圍,考查計算能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析(3)證明見解析【解析】

(1)由是遞增數(shù)列,得,由此能求出的前項和.(2)推導出,,由此能證明的“極差數(shù)列”仍是.(3)證當數(shù)列是等差數(shù)列時,設其公差為,,是一個單調(diào)遞增數(shù)列,從而,,由,,,分類討論,能證明若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.【詳解】(1)解:∵無窮數(shù)列的前項中最大值為,最小值為,,,是遞增數(shù)列,∴,∴的前項和.(2)證明:∵,,∴,∴,∵,∴,∴的“極差數(shù)列”仍是(3)證明:當數(shù)列是等差數(shù)列時,設其公差為,,根據(jù),的定義,得:,,且兩個不等式中至少有一個取等號,當時,必有,∴,∴是一個單調(diào)遞增數(shù)列,∴,,∴,∴,∴是等差數(shù)列,當時,則必有,∴,∴是一個單調(diào)遞減數(shù)列,∴,,∴,∴.∴是等差數(shù)列,當時,,∵,中必有一個為0,根據(jù)上式,一個為0,為一個必為0,∴,,∴數(shù)列是常數(shù)數(shù)列,則數(shù)列是等差數(shù)列.綜上,若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.【點睛】本小題主要考查新定義數(shù)列的理解和運用,考查等差數(shù)列的證明,考查數(shù)列的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于難題.18、(1),;(2).【解析】

(1)令求出的值,然后由,得出,然后檢驗是否符合在時的表達式,即可得出數(shù)列的通項公式,并設數(shù)列的公比為,根據(jù)題意列出和的方程組,解出這兩個量,然后利用等比數(shù)列的通項公式可求出;(2)求出數(shù)列的前項和,然后利用分組求和法可求出.【詳解】(1)當時,,當時,.也適合上式,所以,.設數(shù)列的公比為,則,由,兩式相除得,,解得,,;(2)設數(shù)列的前項和為,則,.【點睛】本題考查利用求,同時也考查了等比數(shù)列通項的計算,以及分組求和法的應用,考查計算能力,屬于中等題.19、(1);(2)極小值;(3)函數(shù)的零點個數(shù)為.【解析】

(1)求出和的值,利用點斜式可得出所求切線的方程;(2)利用導數(shù)分析函數(shù)的單調(diào)性,進而可得出該函數(shù)的極小值;(3)由當時,以及,結(jié)合函數(shù)在區(qū)間上的單調(diào)性可得出函數(shù)的零點個數(shù).【詳解】(1)因為,所以.所以,.所以曲線在點處的切線為;(2)因為,令,得或.列表如下:0極大值極小值所以,函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為,所以,當時,函數(shù)有極小值;(3)當時,,且.由(2)可知,函數(shù)在上單調(diào)遞增,所以函數(shù)的零點個數(shù)為.【點睛】本題考查利用導數(shù)求函數(shù)的切線方程、極值以及利用導數(shù)研究函數(shù)的零點問題,考查分析問題和解決問題的能力,屬于中等題.20、(1)12(2)【解析】

(1)根據(jù)焦距得焦點坐標,結(jié)合橢圓上的點的坐標,根據(jù)定義;(2)求出橢圓的標準方程,設,聯(lián)立直線和橢圓,結(jié)合韋達定理表示出面積,即可求解最大值.【詳解】(1)設橢園的焦距為,則,故.則橢圓過點,由橢圓定義知:,故,因此,的周長;(2)由(1)知:,橢圓方程為:設,則,,,,,當且僅當在短軸頂點處取等,故面積的最大值為.【點睛】此題考查根據(jù)橢圓的焦點和橢圓上的點的坐標求橢圓的標準方程,根據(jù)直線與橢圓的交點關系求三角形面積的最值,涉及韋達定理的使用,綜合性強,計算量大.21、(1)(2)證明見解析(3)證明見解析【解析】

(1)由題意可得,,令,利用導數(shù)得在上單調(diào)遞減,進而可得結(jié)論;(2)不等式轉(zhuǎn)化為,令,,利用導數(shù)得單調(diào)性即可得到答案;(3)由題意可得,進而可將不等式轉(zhuǎn)化為,再利用單調(diào)性可得,記,,再利用導數(shù)研究單調(diào)性可得在上單調(diào)遞增,即,即,即可得到結(jié)論.【詳解】(1),即,化簡可得.令,,因為,所以,.所以,在上單調(diào)遞減,.所以的最小值為.(2)要證,即.兩邊同除以可得.設,則.在上,,所以在上單調(diào)遞減.在上,,所以在上單調(diào)遞增,所以.設,因為在上是減函數(shù),所以.所以,即.(3)證明:方程在區(qū)間上的實根為,即,要證,由可知,即要證.當時,,,因而在上單調(diào)遞增.當時,,,因而在上單調(diào)遞減.因為,所以,要證.即要證.記,.因為,所以,則..設,,當時,.時,,故.且,故,因為,所以.因此,即在上單調(diào)遞增.所以,即.故得證.【點睛】本題考查函數(shù)的單調(diào)性、最值、函數(shù)恒成

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論