版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第13講拓展六:泰勒展開式與超越不等式在導(dǎo)數(shù)中的應(yīng)用(精講)目錄第一部分:知識點精準記憶第二部分:典型例題剖析高頻考點一:利用超越不等式比較大小高頻考點二:利用對數(shù)型超越放縮證明不等式高頻考點三:利用指數(shù)型超越放縮證明不等式第一部分:知識點精準記憶第一部分:知識點精準記憶1、泰勒公式形式:泰勒公式是將一個在SKIPIF1<0處具有SKIPIF1<0階導(dǎo)數(shù)的函數(shù)利用關(guān)于SKIPIF1<0的SKIPIF1<0次多項式來逼近函數(shù)的方法.若函數(shù)SKIPIF1<0在包含SKIPIF1<0的某個閉區(qū)間SKIPIF1<0上具有SKIPIF1<0階導(dǎo)數(shù),且在開區(qū)間SKIPIF1<0上具有SKIPIF1<0階導(dǎo)數(shù),則對閉區(qū)間SKIPIF1<0上任意一點SKIPIF1<0,成立下式:SKIPIF1<0其中:SKIPIF1<0表示SKIPIF1<0在SKIPIF1<0處的SKIPIF1<0階導(dǎo)數(shù),等號后的多項式稱為函數(shù)SKIPIF1<0在SKIPIF1<0處的泰勒展開式,剩余的SKIPIF1<0是泰勒公式的余項,是SKIPIF1<0的高階無窮小量.2、麥克勞林(Maclaurin)公式SKIPIF1<0雖然麥克勞林公式是泰勒中值定理的特殊形式,僅僅是取SKIPIF1<0的特殊結(jié)果,由于麥克勞林公式使用方便,在高考中經(jīng)常會涉及到.3、常見函數(shù)的麥克勞林展開式:(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0(4)SKIPIF1<0(5)SKIPIF1<0(6)SKIPIF1<04、兩個超越不等式:(注意解答題需先證明后使用)4.1對數(shù)型超越放縮:SKIPIF1<0(SKIPIF1<0)SKIPIF1<0上式(1)中等號右邊只取第一項得:SKIPIF1<0SKIPIF1<0結(jié)論①用SKIPIF1<0替換上式結(jié)論①中的SKIPIF1<0得:SKIPIF1<0SKIPIF1<0結(jié)論②對于結(jié)論②左右兩邊同乘“SKIPIF1<0”得SKIPIF1<0,用SKIPIF1<0替換“SKIPIF1<0”得:SKIPIF1<0(SKIPIF1<0)SKIPIF1<0結(jié)論③4.2指數(shù)型超越放縮:SKIPIF1<0(SKIPIF1<0)SKIPIF1<0上式(2)中等號右邊只取前2項得:SKIPIF1<0SKIPIF1<0結(jié)論①用SKIPIF1<0替換上式結(jié)論①中的SKIPIF1<0得:SKIPIF1<0SKIPIF1<0結(jié)論②當SKIPIF1<0時,對于上式結(jié)論②SKIPIF1<0SKIPIF1<0結(jié)論③當SKIPIF1<0時,對于上式結(jié)論②SKIPIF1<0SKIPIF1<0結(jié)論④第二部分:典型例題剖析第二部分:典型例題剖析高頻考點一:利用超越不等式比較大小1.(2022·全國·高三專題練習(文))已知SKIPIF1<0,則SKIPIF1<0的大小關(guān)系為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】先用導(dǎo)數(shù)證明這兩個重要的不等式①SKIPIF1<0,當且僅當SKIPIF1<0時取“=”SKIPIF1<0SKIPIF1<0SKIPIF1<0,函數(shù)遞減,SKIPIF1<0函數(shù)遞增故SKIPIF1<0時函數(shù)取得最小值為0故SKIPIF1<0,當且僅當SKIPIF1<0時取“=”②SKIPIF1<0,當且僅當SKIPIF1<0時取“=”SKIPIF1<0SKIPIF1<0SKIPIF1<0,函數(shù)遞增,SKIPIF1<0函數(shù)遞減,故SKIPIF1<0時函數(shù)取得最大值為0,故SKIPIF1<0,當且僅當SKIPIF1<0時取“=”故SKIPIF1<0SKIPIF1<0故選:C2.(2021·安徽·毛坦廠中學(xué)高三階段練習(理))設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,(其中自然對數(shù)的底數(shù)SKIPIF1<0)則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】構(gòu)造函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上SKIPIF1<0遞增,在SKIPIF1<0上SKIPIF1<0遞減,所以SKIPIF1<0,即SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,考慮到SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,化簡得SKIPIF1<0等號當且僅當SKIPIF1<0時取到,故SKIPIF1<0時SKIPIF1<0,排除A,B.下面比較a,b大小,由SKIPIF1<0得,SKIPIF1<0,故SKIPIF1<0.所以SKIPIF1<0.故選:D3.(2022·全國·高三專題練習)已知實數(shù)a,b,c滿足SKIPIF1<0,且SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:A.【點睛】關(guān)鍵點睛:解決本題的關(guān)鍵是利用經(jīng)典不等式SKIPIF1<0可得SKIPIF1<0.4.(2022·河南洛陽·高二期末(文))下列結(jié)論中正確的個數(shù)為(
)①SKIPIF1<0,SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0.A.0 B.1 C.2 D.3【答案】C【詳解】解:令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,故①正確;令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0恒成立,所以SKIPIF1<0,故②正確;令SKIPIF1<0,SKIPIF1<0,當SKIPIF1<0時SKIPIF1<0,當SKIPIF1<0時SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,當且僅當SKIPIF1<0時取等號,故③錯誤;故選:C5.(2021·浙江·模擬預(yù)測)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,給出以下結(jié)論,正確的個數(shù)是(
)①SKIPIF1<0;②SKIPIF1<0;③存在無窮多個SKIPIF1<0,使SKIPIF1<0;④SKIPIF1<0A.4 B.3 C.2 D.1【答案】B【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0單調(diào)遞增且大于0,所以SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0故①正確;令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且當且僅當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.因為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,故②正確;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由歸納法可知,SKIPIF1<0,故不存在無窮多個SKIPIF1<0,使SKIPIF1<0,故③錯誤;由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,累加可得:SKIPIF1<0可知④正確.故選:B.7.(2022·安徽·六安一中高二開學(xué)考試)已知SKIPIF1<0成等比數(shù)列,且SKIPIF1<0,若SKIPIF1<0,則A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,又SKIPIF1<0成等比數(shù)列,且SKIPIF1<0,設(shè)其公比為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故選:A.【點睛】本題考查導(dǎo)數(shù)中的不等式在數(shù)列中的應(yīng)用,以及等比數(shù)列的相關(guān)性質(zhì),屬于中檔題.導(dǎo)數(shù)中存在著一些常用的不等式結(jié)論,學(xué)生可以盡可能掌握.高頻考點二:利用對數(shù)型超越放縮證明不等式1.(2022·全國·高三專題練習)已知函數(shù)f(x)=lnx-ax+1在x=2處的切線斜率為-SKIPIF1<0.(1)求實數(shù)a的值及函數(shù)f(x)的單調(diào)區(qū)間;(2)設(shè)g(x)=SKIPIF1<0,對?x1SKIPIF1<0(0,+∞),?x2SKIPIF1<0(-∞,0)使得f(x1)≤g(x2)成立,求正實數(shù)k的取值范圍;(3)證明:SKIPIF1<0+SKIPIF1<0+…+SKIPIF1<0(n∈N*,n≥2).【答案】(1)a=1,增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0(2)SKIPIF1<0(3)證明見解析(1)由已知得f′(x)=SKIPIF1<0-a,∴f′(2)=SKIPIF1<0-a=-SKIPIF1<0,解得a=1.于是f′(x)=SKIPIF1<0-1=SKIPIF1<0,當xSKIPIF1<0(0,1)時,f′(x)>0,f(x)為增函數(shù),當xSKIPIF1<0(1,+∞)時,f′(x)<0,f(x)為減函數(shù),即f(x)的單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為(1,+∞).(2)由(1)知x1SKIPIF1<0(0,+∞),f(x1)≤f(1)=0,即f(x1)的最大值為0,由題意知:對?x1SKIPIF1<0(0,+∞),?x2SKIPIF1<0(-∞,0)使得f(x1)≤g(x2)成立,只需f(x)max≤g(x)max.∵g(x)=SKIPIF1<0SKIPIF1<0,(SKIPIF1<0等號成立)∴只需SKIPIF1<0,解得SKIPIF1<0.(3)證明:要證明SKIPIF1<0(nSKIPIF1<0N*,n≥2).只需證SKIPIF1<0,只需證SKIPIF1<0.由(1)當xSKIPIF1<0(1,+∞)時,f′(x)<0,f(x)為減函數(shù),f(x)=lnx-x+1≤0,即lnx≤x-1,∴當n≥2時,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0.2.(2022·河南·林州一中高二期中(理))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)見解析(2)證明見解析(1)SKIPIF1<0當SKIPIF1<0時,SKIPIF1<0,故函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增當SKIPIF1<0時,SKIPIF1<0故函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增(2)由(1)可知,SKIPIF1<0令SKIPIF1<0,SKIPIF1<0即函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故SKIPIF1<0故SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0即SKIPIF1<03.(2022·陜西咸陽·二模(文))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0恒成立,求實數(shù)SKIPIF1<0的取值范圍;(2)證明:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見解析【解析】(1)由題意得:SKIPIF1<0定義域為SKIPIF1<0;由SKIPIF1<0得:SKIPIF1<0;設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0;SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,SKIPIF1<0,即實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.(2)由(1)知:當SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,即SKIPIF1<0;SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0.【點睛】關(guān)鍵點點睛:本題考查導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用,涉及到恒成立問題求解和不等式的證明問題;證明不等式的關(guān)鍵是能夠充分利用(1)中的結(jié)論,將所證不等式進行放縮,從而結(jié)合等比數(shù)列求和的知識進行證明.4.(2022·陜西咸陽·二模(理))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0恒成立,求實數(shù)k的取值范圍;(2)證明:SKIPIF1<0(SKIPIF1<0,SKIPIF1<0).【答案】(1)SKIPIF1<0;(2)證明見解析﹒【解析】(1)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0=SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,當x>1時,SKIPIF1<0單調(diào)遞減,∴SKIPIF1<0,∴SKIPIF1<0;(2)由(1)知,SKIPIF1<0時,有不等式SKIPIF1<0對任意SKIPIF1<0恒成立,當且僅當SKIPIF1<0時,取“=”號,∴SKIPIF1<0,SKIPIF1<0恒成立,令SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0),則SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0,即SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),∴SKIPIF1<0(SKIPIF1<0,SKIPIF1<0).【點睛】本題關(guān)鍵是利用(1)中的結(jié)論,取k=1時得到不等式SKIPIF1<0,從而得到x>1時,SKIPIF1<0,令SKIPIF1<0,即可構(gòu)造不等式SKIPIF1<0,從而通過裂項相消法求出SKIPIF1<0的范圍,從而證明結(jié)論.5.(2022·重慶市實驗中學(xué)高二階段練習)已知函數(shù)SKIPIF1<0,其中SKIPIF1<0且SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)當SKIPIF1<0時,證明:SKIPIF1<0;(3)求證:對任意的SKIPIF1<0且SKIPIF1<0,都有:SKIPIF1<0…SKIPIF1<0.(其中SKIPIF1<0為自然對數(shù)的底數(shù))【答案】(1)答案見解析;(2)證明見解析;(3)證明見解析.【解析】(1)函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0,①當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;②當SKIPIF1<0時,令SKIPIF1<0,解得SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.綜上,當SKIPIF1<0時,函數(shù)SKIPIF1<0在SKIPIF1<0上調(diào)遞增;當SKIPIF1<0時,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.(2)當SKIPIF1<0時,SKIPIF1<0,要證明SKIPIF1<0,即證SKIPIF1<0,即SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0得,可得SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0.所以SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0.(3)由(2)可得SKIPIF1<0,(當且僅當SKIPIF1<0時等號成立),令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0…SKIPIF1<0…SKIPIF1<0…SKIPIF1<0SKIPIF1<0…SKIPIF1<0,即SKIPIF1<0…SKIPIF1<0,故SKIPIF1<0…SKIPIF1<0.【點睛】本題考察利用導(dǎo)數(shù)研究含參函數(shù)單調(diào)性,以及構(gòu)造函數(shù)利用導(dǎo)數(shù)證明不等式,以及數(shù)列和導(dǎo)數(shù)的綜合,屬綜合困難題.6.(2022·內(nèi)蒙古·元寶山平煤高中高二階段練習(理))已知函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)證明:SKIPIF1<0.【答案】(1)當SKIPIF1<0時,SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0;(2)證明見解析.【解析】(1)因為SKIPIF1<0(SKIPIF1<0),所以SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上為增函數(shù);若SKIPIF1<0,則SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0.綜上,當SKIPIF1<0時,SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0.(2)當SKIPIF1<0時,由上可知SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0,有SKIPIF1<0在SKIPIF1<0恒成立,且SKIPIF1<0在SKIPIF1<0上是減函數(shù),即SKIPIF1<0在SKIPIF1<0上恒成立,令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0SKIPIF1<0且SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即:SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)成立.7.(2022·河南·林州一中高二期中(理))已知函數(shù)SKIPIF1<0.(1)求曲線SKIPIF1<0在點SKIPIF1<0處的切線方程;(2)證明:SKIPIF1<0;(3)若SKIPIF1<0且SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見解析(3)證明見解析【解析】(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0則曲線SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0.(2)由(1)可得SKIPIF1<0SKIPIF1<0即函數(shù)SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0(3)由(2)可得SKIPIF1<0在SKIPIF1<0上恒成立令SKIPIF1<0,則SKIPIF1<0則SKIPIF1<0故SKIPIF1<0【點睛】關(guān)鍵點睛:解決第三問時,關(guān)鍵是由導(dǎo)數(shù)得出SKIPIF1<0,進而由對數(shù)的運算證明不等式.高頻考點三:利用指數(shù)型超越放縮證明不等式1.(2022·四川·棠湖中學(xué)高二階段練習(文))已知函數(shù)SKIPIF1<0.(1)當SKIPIF1<0時,求曲線SKIPIF1<0在點SKIPIF1<0處的切線方程;(2)當SKIPIF1<0時,若關(guān)于SKIPIF1<0的不等式SKIPIF1<0恒成立,求SKIPIF1<0的取值范圍;(3)當SKIPIF1<0時,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)證明見解析【解析】(1)當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,切點為SKIPIF1<0,斜率SKIPIF1<0,.∴曲線SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0.即SKIPIF1<0.(2)由SKIPIF1<0,得SKIPIF1<0恒成立,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上SKIPIF1<0,SKIPIF1<0單調(diào)遞減,在SKIPIF1<0上SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0的最小值為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0的取值范圍是SKIPIF1<0;(3)由(2)知SKIPIF1<0時,有SKIPIF1<0,所以SKIPIF1<0.①要證SKIPIF1<0,可證SKIPIF1<0,只需證SKIPIF1<0.先證SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單減,在SKIPIF1<0上單增,∴SKIPIF1<0,故SKIPIF1<0(當且僅當SKIPIF1<0時取等號),從而當SKIPIF1<0時,SKIPIF1<0.故當SKIPIF1<0時,SKIPIF1<0成立.②要證SKIPIF1<0,可證SKIPIF1<0.構(gòu)造函數(shù)SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單增,在SKIPIF1<0上單減,故SKIPIF1<0,即SKIPIF1<0(當且僅當SKIPIF1<0時取等號),從而當SKIPIF1<0時,SKIPIF1<0.由于SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,綜上所述,當SKIPIF1<0時,證明:SKIPIF1<0.【點睛】要證明SKIPIF1<0,可通過證明SKIPIF1<0來證得.在利用導(dǎo)數(shù)證明不等式的過程中,主要利用的是導(dǎo)數(shù)的工具性的作用,也即利用導(dǎo)數(shù)來求單調(diào)區(qū)間、最值等.2.(2022·河南省杞縣高中模擬預(yù)測(理))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0恒成立,求實數(shù)a的值;(2)若SKIPIF1<0,求證:SKIPIF1<0.【答案】(1)1(2)證明見解析【解析】(1)設(shè)SKIPIF1<0,則SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,SKIPIF1<0,不滿足SKIPIF1<0恒成立;當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.所以SKIPIF1<0的最小值為SKIPIF1<0.即SKIPIF1<0,即SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在(0,1)上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,即SKIPIF1<0,故SKIPIF1<0的解只有SKIPIF1<0.綜上,SKIPIF1<0.(2)證明:先證當SKIPIF1<0時,SKIPIF1<0恒成立.令SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在(0,1)上單調(diào)遞增,又SKIPIF1<0,所以SKIPIF1<0.所以要證SKIPIF1<0,即證SKIPIF1<0,即證SKIPIF1<0,即證SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在(0,1)上單調(diào)遞減,所以SKIPIF1<0,即原不等式成立.所以當SKIPIF1<0時,SKIPIF1<0.【點睛】關(guān)鍵點點睛:此題考查導(dǎo)數(shù)的綜合應(yīng)用,考查利用導(dǎo)數(shù)解決不等式恒成立問題,考查利用導(dǎo)數(shù)證明不等式,解題的關(guān)鍵是先證當SKIPIF1<0時,SKIPIF1<0恒成立,然后將SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0,即證SKIPIF1<0,再構(gòu)造函數(shù)求出其最小值大于零即可,考查數(shù)學(xué)轉(zhuǎn)化思想,屬于較難題3.(2022·浙江省諸暨市第二高級中學(xué)模擬預(yù)測)已知函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(1)當SKIPIF1<0,SKIPIF1<0時,求函數(shù)SKIPIF1<0在SKIPIF1<0處的切線方程;(2)若SKIPIF1<0且SKIPIF1<0恒成立,求SKIPIF1<0的取值范圍:(3)當SKIPIF1<0時,記SKIPIF1<0,SKIPIF1<0(其中SKIPIF1<0)為SKIPIF1<0在SKIPIF1<0上的兩個零點,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)詳見解析.(1)當SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴函數(shù)SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0;(2)由題意可知SKIPIF1<0,當SKIPIF1<0時,不等式SKIPIF1<0顯然成立,故SKIPIF1<0;當SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 步進電機硬件課程設(shè)計
- 循證護理課程設(shè)計
- 2024年四川省安全員A證考試題庫附答案
- 硬筆書法字課程設(shè)計
- 2024吉林省安全員C證考試題庫
- 線下管理課程設(shè)計
- 2024年海南省建筑安全員C證(專職安全員)考試題庫
- 現(xiàn)代教育及課程設(shè)計
- 移動計費系統(tǒng)課程設(shè)計
- 短視頻培訓(xùn)課程設(shè)計
- TSG51-2023起重機械安全技術(shù)規(guī)程
- 生活垃圾焚燒廠運行維護與安全技術(shù)標準 CJJ 128-2017
- 智慧物流第4套理論題附有答案
- GB/T 44325-2024工業(yè)循環(huán)冷卻水零排污技術(shù)規(guī)范
- Web安全與防護 (微課版)教案全套 武春嶺 01-1 項目一 Web安全基礎(chǔ)-08-4 項目八 安全的應(yīng)用發(fā)布
- 餐飲管理招聘面試題與參考回答(某大型央企)
- 期末質(zhì)量評價(試題)-2024-2025學(xué)年一年級上冊數(shù)學(xué)人教版
- DB62-T 4886-2024 肉用種羊選育技術(shù)規(guī)范
- 一例超低出生體重兒護理個案查房
- 八年級生物下冊 第7單元 第2章 第1節(jié) 基因控制生物的性狀教案2 (新版)新人教版
- 2024春期國開電大本科《外國文學(xué)》在線形考(形考任務(wù)一至四)試題及答案
評論
0/150
提交評論