




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆福建省福州市八縣高三最后一卷數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),且關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,則實(shí)數(shù)的取值范圍().A. B. C. D.2.已知雙曲線:(,)的焦距為.點(diǎn)為雙曲線的右頂點(diǎn),若點(diǎn)到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.33.執(zhí)行如圖所示的程序框圖,則輸出的的值是()A.8 B.32 C.64 D.1284.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是()A. B. C. D.5.在中,,,,則邊上的高為()A. B.2 C. D.6.函數(shù)的最大值為,最小正周期為,則有序數(shù)對為()A. B. C. D.7.函數(shù)在的圖象大致為()A. B.C. D.8.年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級政府相繼啟動重大突發(fā)公共衛(wèi)生事件一級響應(yīng),全國人心抗擊疫情.下圖表示月日至月日我國新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯(cuò)誤的是()A.月下旬新增確診人數(shù)呈波動下降趨勢B.隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù)C.月日至月日新增確診人數(shù)波動最大D.我國新型冠狀病毒肺炎累計(jì)確診人數(shù)在月日左右達(dá)到峰值9.閱讀下側(cè)程序框圖,為使輸出的數(shù)據(jù)為31,則①處應(yīng)填的數(shù)字為A.4 B.5 C.6 D.710.一物體作變速直線運(yùn)動,其曲線如圖所示,則該物體在間的運(yùn)動路程為()m.A.1 B. C. D.211.已知是空間中兩個(gè)不同的平面,是空間中兩條不同的直線,則下列說法正確的是()A.若,且,則B.若,且,則C.若,且,則D.若,且,則12.已知等差數(shù)列的前項(xiàng)和為,且,則()A.45 B.42 C.25 D.36二、填空題:本題共4小題,每小題5分,共20分。13.若滿足約束條件,則的最大值為__________.14.如圖,在△ABC中,E為邊AC上一點(diǎn),且,P為BE上一點(diǎn),且滿足,則的最小值為______.15.在的二項(xiàng)展開式中,只有第5項(xiàng)的二項(xiàng)式系數(shù)最大,則該二項(xiàng)展開式中的常數(shù)項(xiàng)等于_____.16.某四棱錐的三視圖如圖所示,那么此四棱錐的體積為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足且(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.18.(12分)已知數(shù)列和滿足,,,,.(Ⅰ)求與;(Ⅱ)記數(shù)列的前項(xiàng)和為,且,若對,恒成立,求正整數(shù)的值.19.(12分)已知橢圓的中心在坐標(biāo)原點(diǎn),其短半軸長為,一個(gè)焦點(diǎn)坐標(biāo)為,點(diǎn)在橢圓上,點(diǎn)在直線上的點(diǎn),且.證明:直線與圓相切;求面積的最小值.20.(12分)已知函數(shù),.(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;(2)若,當(dāng)時(shí),函數(shù),求函數(shù)的最小值.21.(12分)如圖,在四棱錐中,平面,四邊形為正方形,點(diǎn)為線段上的點(diǎn),過三點(diǎn)的平面與交于點(diǎn).將①,②,③中的兩個(gè)補(bǔ)充到已知條件中,解答下列問題:(1)求平面將四棱錐分成兩部分的體積比;(2)求直線與平面所成角的正弦值.22.(10分)已知曲線:和:(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,且兩種坐標(biāo)系中取相同的長度單位.(1)求曲線的直角坐標(biāo)方程和的方程化為極坐標(biāo)方程;(2)設(shè)與,軸交于,兩點(diǎn),且線段的中點(diǎn)為.若射線與,交于,兩點(diǎn),求,兩點(diǎn)間的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)條件可知方程有且只有一個(gè)實(shí)根等價(jià)于函數(shù)的圖象與直線只有一個(gè)交點(diǎn),作出圖象,數(shù)形結(jié)合即可.【詳解】解:因?yàn)闂l件等價(jià)于函數(shù)的圖象與直線只有一個(gè)交點(diǎn),作出圖象如圖,由圖可知,,故選:B.【點(diǎn)睛】本題主要考查函數(shù)圖象與方程零點(diǎn)之間的關(guān)系,數(shù)形結(jié)合是關(guān)鍵,屬于基礎(chǔ)題.2、A【解析】
由點(diǎn)到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【點(diǎn)睛】本題考查求雙曲線的離心率,掌握漸近線方程與點(diǎn)到直線距離公式是解題基礎(chǔ).3、C【解析】
根據(jù)給定的程序框圖,逐次計(jì)算,結(jié)合判斷條件,即可求解.【詳解】由題意,執(zhí)行上述程序框圖,可得第1次循環(huán),滿足判斷條件,;第2次循環(huán),滿足判斷條件,;第3次循環(huán),滿足判斷條件,;第4次循環(huán),滿足判斷條件,;不滿足判斷條件,輸出.故選:C.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計(jì)算與輸出,其中解答中認(rèn)真審題,逐次計(jì)算,結(jié)合判斷條件求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.4、D【解析】
根據(jù)三視圖判斷出幾何體為正四棱錐,由此計(jì)算出幾何體的表面積.【詳解】根據(jù)三視圖可知,該幾何體為正四棱錐.底面積為.側(cè)面的高為,所以側(cè)面積為.所以該幾何體的表面積是.故選:D【點(diǎn)睛】本小題主要考查由三視圖判斷原圖,考查錐體表面積的計(jì)算,屬于基礎(chǔ)題.5、C【解析】
結(jié)合正弦定理、三角形的內(nèi)角和定理、兩角和的正弦公式,求得邊長,由此求得邊上的高.【詳解】過作,交的延長線于.由于,所以為鈍角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即邊上的高為.故選:C【點(diǎn)睛】本小題主要考查正弦定理解三角形,考查三角形的內(nèi)角和定理、兩角和的正弦公式,屬于中檔題.6、B【解析】函數(shù)(為輔助角)∴函數(shù)的最大值為,最小正周期為故選B7、B【解析】
先考慮奇偶性,再考慮特殊值,用排除法即可得到正確答案.【詳解】是奇函數(shù),排除C,D;,排除A.故選:B.【點(diǎn)睛】本題考查函數(shù)圖象的判斷,屬于常考題.8、D【解析】
根據(jù)新增確診曲線的走勢可判斷A選項(xiàng)的正誤;根據(jù)新增確診曲線與新增治愈曲線的位置關(guān)系可判斷B選項(xiàng)的正誤;根據(jù)月日至月日新增確診曲線的走勢可判斷C選項(xiàng)的正誤;根據(jù)新增確診人數(shù)的變化可判斷D選項(xiàng)的正誤.綜合可得出結(jié)論.【詳解】對于A選項(xiàng),由圖象可知,月下旬新增確診人數(shù)呈波動下降趨勢,A選項(xiàng)正確;對于B選項(xiàng),由圖象可知,隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù),B選項(xiàng)正確;對于C選項(xiàng),由圖象可知,月日至月日新增確診人數(shù)波動最大,C選項(xiàng)正確;對于D選項(xiàng),在月日及以前,我國新型冠狀病毒肺炎新增確診人數(shù)大于新增治愈人數(shù),我國新型冠狀病毒肺炎累計(jì)確診人數(shù)不在月日左右達(dá)到峰值,D選項(xiàng)錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查統(tǒng)計(jì)圖表的應(yīng)用,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.9、B【解析】考點(diǎn):程序框圖.分析:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)求S的值,我們用表格列出程序運(yùn)行過程中各變量的值的變化情況,不難給出答案.解:程序在運(yùn)行過程中各變量的值如下表示:Si是否繼續(xù)循環(huán)循環(huán)前11/第一圈32是第二圈73是第三圈154是第四圈315否故最后當(dāng)i<5時(shí)退出,故選B.10、C【解析】
由圖像用分段函數(shù)表示,該物體在間的運(yùn)動路程可用定積分表示,計(jì)算即得解【詳解】由題中圖像可得,由變速直線運(yùn)動的路程公式,可得.所以物體在間的運(yùn)動路程是.故選:C【點(diǎn)睛】本題考查了定積分的實(shí)際應(yīng)用,考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.11、D【解析】
利用線面平行和垂直的判定定理和性質(zhì)定理,對選項(xiàng)做出判斷,舉出反例排除.【詳解】解:對于,當(dāng),且,則與的位置關(guān)系不定,故錯(cuò);對于,當(dāng)時(shí),不能判定,故錯(cuò);對于,若,且,則與的位置關(guān)系不定,故錯(cuò);對于,由可得,又,則故正確.故選:.【點(diǎn)睛】本題考查空間線面位置關(guān)系.判斷線面位置位置關(guān)系利用好線面平行和垂直的判定定理和性質(zhì)定理.一般可借助正方體模型,以正方體為主線直觀感知并準(zhǔn)確判斷.12、D【解析】
由等差數(shù)列的性質(zhì)可知,進(jìn)而代入等差數(shù)列的前項(xiàng)和的公式即可.【詳解】由題,.故選:D【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),考查等差數(shù)列的前項(xiàng)和.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】
作出可行域如圖所示:由,解得.目標(biāo)函數(shù),即為,平移斜率為-1的直線,經(jīng)過點(diǎn)時(shí),.14、【解析】試題分析:根據(jù)題意有,因?yàn)槿c(diǎn)共線,所以有,從而有,所以的最小值是.考點(diǎn):向量的運(yùn)算,基本不等式.【方法點(diǎn)睛】該題考查的是有關(guān)應(yīng)用基本不等式求最值的問題,屬于中檔題目,在解題的過程中,關(guān)鍵步驟在于對題中條件的轉(zhuǎn)化,根據(jù)三點(diǎn)共線,結(jié)合向量的性質(zhì)可知,從而等價(jià)于已知兩個(gè)正數(shù)的整式形式和為定值,求分式形式和的最值的問題,兩式乘積,最后應(yīng)用基本不等式求得結(jié)果,最后再加,得出最后的答案.15、1【解析】
由題意可得,再利用二項(xiàng)展開式的通項(xiàng)公式,求得二項(xiàng)展開式常數(shù)項(xiàng)的值.【詳解】的二項(xiàng)展開式的中,只有第5項(xiàng)的二項(xiàng)式系數(shù)最大,,通項(xiàng)公式為,令,求得,可得二項(xiàng)展開式常數(shù)項(xiàng)等于,故答案為1.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.16、【解析】
利用三視圖判斷幾何體的形狀,然后通過三視圖的數(shù)據(jù)求解幾何體的體積.【詳解】如圖:此四棱錐的高為,底面是長為,寬為2的矩形,所以體積.所以本題答案為.【點(diǎn)睛】本題考查幾何體與三視圖的對應(yīng)關(guān)系,幾何體體積的求法,考查空間想象能力與計(jì)算能力.解決本類題目的關(guān)鍵是準(zhǔn)確理解幾何體的定義,真正把握幾何體的結(jié)構(gòu)特征,可以根據(jù)條件構(gòu)建幾何模型,在幾何模型中進(jìn)行判斷.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)根據(jù)已知可得數(shù)列為等比數(shù)列,即可求解;(2)由(1)可得為等比數(shù)列,根據(jù)等比數(shù)列和等差數(shù)列的前項(xiàng)和公式,即可求解.【詳解】(1)因?yàn)?,所以,又所以?shù)列為等比數(shù)列,且首項(xiàng)為,公比為.故(2)由(1)知,所以所以【點(diǎn)睛】本題考查等比數(shù)列的定義及通項(xiàng)公式、等差數(shù)列和等比數(shù)列的前項(xiàng)和,屬于基礎(chǔ)題.18、(Ⅰ),;(Ⅱ)1【解析】
(Ⅰ)易得為等比數(shù)列,再利用前項(xiàng)和與通項(xiàng)的關(guān)系求解的通項(xiàng)公式即可.(Ⅱ)由題可知要求的最小值,再分析的正負(fù)即可得隨的增大而增大再判定可知即可.【詳解】(Ⅰ)因?yàn)?故是以為首項(xiàng),2為公比的等比數(shù)列,故.又當(dāng)時(shí),,解得.當(dāng)時(shí),…①…②①-②有,即.當(dāng)時(shí)也滿足.故為常數(shù)列,所以.即.故,(Ⅱ)因?yàn)閷?恒成立.故只需求的最小值即可.設(shè),則,又,又當(dāng)時(shí),時(shí).當(dāng)時(shí),因?yàn)?故.綜上可知.故隨著的增大而增大,故,故【點(diǎn)睛】本題主要考查了根據(jù)數(shù)列的遞推公式求解通項(xiàng)公式的方法,同時(shí)也考查了根據(jù)數(shù)列的增減性判斷最值的問題,需要根據(jù)題意求解的通項(xiàng),并根據(jù)二項(xiàng)式定理分析其正負(fù),從而得到最小項(xiàng).屬于難題.19、證明見解析;1.【解析】
由題意可得橢圓的方程為,由點(diǎn)在直線上,且知的斜率必定存在,分類討論當(dāng)?shù)男甭蕿闀r(shí)和斜率不為時(shí)的情況列出相應(yīng)式子,即可得出直線與圓相切;由知,的面積為【詳解】解:由題意,橢圓的焦點(diǎn)在軸上,且,所以.所以橢圓的方程為.由點(diǎn)在直線上,且知的斜率必定存在,當(dāng)?shù)男甭蕿闀r(shí),,,于是,到的距離為,直線與圓相切.當(dāng)?shù)男甭什粸闀r(shí),設(shè)的方程為,與聯(lián)立得,所以,,從而.而,故的方程為,而在上,故,從而,于是.此時(shí),到的距離為,直線與圓相切.綜上,直線與圓相切.由知,的面積為,上式中,當(dāng)且僅當(dāng)?shù)忍柍闪ⅲ悦娣e的最小值為1.【點(diǎn)睛】本題主要考查直線與橢圓的位置關(guān)系、直線與圓的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力、推理論證能力和創(chuàng)新意識,考查化歸與轉(zhuǎn)化思想,屬于難題.20、(1)見解析(2)的最小值為【解析】
(1)由題可得函數(shù)的定義域?yàn)?,,?dāng)時(shí),,令,可得;令,可得,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),令,可得;令,可得或,所以函數(shù)在,上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),恒成立,所以函數(shù)在上單調(diào)遞增.綜上,當(dāng)時(shí),函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),函數(shù)在,上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),函數(shù)在上單調(diào)遞增.(2)方法一:當(dāng)時(shí),,,設(shè),,則,所以函數(shù)在上單調(diào)遞減,所以,當(dāng)且僅當(dāng)時(shí)取等號.當(dāng)時(shí),設(shè),則,所以,設(shè),,則,所以函數(shù)在上單調(diào)遞減,且,,所以存在,使得,所以當(dāng)時(shí),;當(dāng)時(shí),,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,因?yàn)?,,所以,所以,?dāng)且僅當(dāng)時(shí)取等號.所以當(dāng)時(shí),函數(shù)取得最小值,且,故函數(shù)的最小值為.方法二:當(dāng)時(shí),,,則,令,,則,所以函數(shù)在上單調(diào)遞增,又,所以存在,使得,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,因?yàn)?,所以?dāng)時(shí),恒成立,所以當(dāng)時(shí),恒成立,所以函數(shù)在上單調(diào)遞減,所以函數(shù)的最小值為.21、(1);(2).【解析】
若補(bǔ)充②③根據(jù)已知可得平面,從而有,結(jié)合,可得平面,故有,而,得到,②③成立與①②相同,①③成立,可得,所以任意補(bǔ)充兩個(gè)條件,結(jié)果都一樣,以①②作為條件分析;(1)設(shè),可得,進(jìn)而求出梯形的面積,可求出,即可求出結(jié)論;(2),以為坐標(biāo)原點(diǎn),建立空間坐標(biāo)系,求出坐標(biāo),由(1)得為平面的法向量,根據(jù)空間向量的線面角公式即可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山師憲法學(xué)試題及答案
- 腰痛病的護(hù)理試題及答案
- 電商物流“最后一公里”配送無人機(jī)配送法規(guī)與政策研究報(bào)告
- 江西省贛州市尋烏縣重點(diǎn)名校2024-2025學(xué)年初三年級第二學(xué)期期末語文試題試卷含解析
- 基于大數(shù)據(jù)的2025年人工智能醫(yī)療影像診斷質(zhì)量控制研究報(bào)告
- 山東省棗莊臺兒莊區(qū)四校聯(lián)考2024-2025學(xué)年中考預(yù)測密卷(1)(英語試題)試卷含答案
- 電動汽車電池?zé)峁芾砑夹g(shù)余熱回收利用與2025年產(chǎn)業(yè)趨勢報(bào)告
- 微機(jī)原理測試題及答案
- 江南大學(xué)《電子商務(wù)綜合》2023-2024學(xué)年第二學(xué)期期末試卷
- 江蘇旅游職業(yè)學(xué)院《合唱與指揮I》2023-2024學(xué)年第一學(xué)期期末試卷
- 【淺談溫州萬豪酒店餐飲食品安全管理的問題與措施(論文)11000字】
- 2022年中國石油大學(xué)《化工原理二》完整答案詳解
- 形勢與政策電氣 個(gè)人答案
- PHOTOSHOP圖形圖像處理課程標(biāo)準(zhǔn)
- 國開電大《Java語言程序設(shè)計(jì)》形考任務(wù)三答案
- 2022年全國大學(xué)生英語競賽C類試題
- 裝飾、裝修施工方案
- 遠(yuǎn)盛水工重力壩輔助設(shè)計(jì)系統(tǒng)用戶使用手冊
- 礦井瓦斯抽采
- 立法學(xué)完整版教學(xué)課件全套ppt教程
- 五年級下冊科學(xué)說課課件 -1.2 沉浮與什么因素有關(guān) |教科版 (共28張PPT)
評論
0/150
提交評論