![湖北沙市中學2024屆高中畢業(yè)生調(diào)研測試數(shù)學試題_第1頁](http://file4.renrendoc.com/view9/M01/0F/23/wKhkGWdMAoWAYI6oAAMLhr57iSA264.jpg)
![湖北沙市中學2024屆高中畢業(yè)生調(diào)研測試數(shù)學試題_第2頁](http://file4.renrendoc.com/view9/M01/0F/23/wKhkGWdMAoWAYI6oAAMLhr57iSA2642.jpg)
![湖北沙市中學2024屆高中畢業(yè)生調(diào)研測試數(shù)學試題_第3頁](http://file4.renrendoc.com/view9/M01/0F/23/wKhkGWdMAoWAYI6oAAMLhr57iSA2643.jpg)
![湖北沙市中學2024屆高中畢業(yè)生調(diào)研測試數(shù)學試題_第4頁](http://file4.renrendoc.com/view9/M01/0F/23/wKhkGWdMAoWAYI6oAAMLhr57iSA2644.jpg)
![湖北沙市中學2024屆高中畢業(yè)生調(diào)研測試數(shù)學試題_第5頁](http://file4.renrendoc.com/view9/M01/0F/23/wKhkGWdMAoWAYI6oAAMLhr57iSA2645.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
湖北沙市中學2024屆高中畢業(yè)生調(diào)研測試數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.點為不等式組所表示的平面區(qū)域上的動點,則的取值范圍是()A. B. C. D.2.設正項等比數(shù)列的前n項和為,若,,則公比()A. B.4 C. D.23.國務院發(fā)布《關于進一步調(diào)整優(yōu)化結構、提高教育經(jīng)費使用效益的意見》中提出,要優(yōu)先落實教育投入.某研究機構統(tǒng)計了年至年國家財政性教育經(jīng)費投入情況及其在中的占比數(shù)據(jù),并將其繪制成下表,由下表可知下列敘述錯誤的是()A.隨著文化教育重視程度的不斷提高,國在財政性教育經(jīng)費的支出持續(xù)增長B.年以來,國家財政性教育經(jīng)費的支出占比例持續(xù)年保持在以上C.從年至年,中國的總值最少增加萬億D.從年到年,國家財政性教育經(jīng)費的支出增長最多的年份是年4.已知菱形的邊長為2,,則()A.4 B.6 C. D.5.存在點在橢圓上,且點M在第一象限,使得過點M且與橢圓在此點的切線垂直的直線經(jīng)過點,則橢圓離心率的取值范圍是()A. B. C. D.6.復數(shù)的()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.公元前世紀,古希臘哲學家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)谋?當比賽開始后,若阿基里斯跑了米,此時烏龜便領先他米,當阿基里斯跑完下一個米時,烏龜先他米,當阿基里斯跑完下-個米時,烏龜先他米....所以,阿基里斯永遠追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時,烏龜爬行的總距離為()A.米 B.米C.米 D.米8.一個空間幾何體的正視圖是長為4,寬為的長方形,側視圖是邊長為2的等邊三角形,俯視圖如圖所示,則該幾何體的體積為()A. B. C. D.9.設,,,則()A. B. C. D.10.如果,那么下列不等式成立的是()A. B.C. D.11.函數(shù)且的圖象是()A. B.C. D.12.函數(shù)的圖象如圖所示,為了得到的圖象,可將的圖象()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位二、填空題:本題共4小題,每小題5分,共20分。13.已知是定義在上的偶函數(shù),其導函數(shù)為.若時,,則不等式的解集是___________.14.如圖是一個算法的偽代碼,運行后輸出的值為___________.15.在平面直角坐標系中,已知圓,圓.直線與圓相切,且與圓相交于,兩點,則弦的長為_________16.已知,若的展開式中的系數(shù)比x的系數(shù)大30,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當時,試求曲線在點處的切線;(2)試討論函數(shù)的單調(diào)區(qū)間.18.(12分)已知函數(shù).其中是自然對數(shù)的底數(shù).(1)求函數(shù)在點處的切線方程;(2)若不等式對任意的恒成立,求實數(shù)的取值范圍.19.(12分)已知函數(shù)(1)當時,求不等式的解集;(2)若函數(shù)的值域為A,且,求a的取值范圍.20.(12分)如圖,在平面直角坐標系xOy中,已知橢圓C:(a>b>0)的離心率為.且經(jīng)過點(1,),A,B分別為橢圓C的左、右頂點,過左焦點F的直線l交橢圓C于D,E兩點(其中D在x軸上方).(1)求橢圓C的標準方程;(2)若△AEF與△BDF的面積之比為1:7,求直線l的方程.21.(12分)如圖,在三棱柱中,、、分別是、、的中點.(1)證明:平面;(2)若底面是正三角形,,在底面的投影為,求到平面的距離.22.(10分)設,,其中.(1)當時,求的值;(2)對,證明:恒為定值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
作出不等式對應的平面區(qū)域,利用線性規(guī)劃的知識,利用的幾何意義即可得到結論.【詳解】不等式組作出可行域如圖:,,,的幾何意義是動點到的斜率,由圖象可知的斜率為1,的斜率為:,則的取值范圍是:,,.故選:.【點睛】本題主要考查線性規(guī)劃的應用,根據(jù)目標函數(shù)的幾何意義結合斜率公式是解決本題的關鍵.2、D【解析】
由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項等比數(shù)列得,∴,故選:D.【點睛】本題主要考查等比數(shù)列的性質(zhì)的應用,屬于基礎題.3、C【解析】
觀察圖表,判斷四個選項是否正確.【詳解】由表易知、、項均正確,年中國為萬億元,年中國為萬億元,則從年至年,中國的總值大約增加萬億,故C項錯誤.【點睛】本題考查統(tǒng)計圖表,正確認識圖表是解題基礎.4、B【解析】
根據(jù)菱形中的邊角關系,利用余弦定理和數(shù)量積公式,即可求出結果.【詳解】如圖所示,菱形形的邊長為2,,∴,∴,∴,且,∴,故選B.【點睛】本題主要考查了平面向量的數(shù)量積和余弦定理的應用問題,屬于基礎題..5、D【解析】
根據(jù)題意利用垂直直線斜率間的關系建立不等式再求解即可.【詳解】因為過點M橢圓的切線方程為,所以切線的斜率為,由,解得,即,所以,所以.故選:D【點睛】本題主要考查了建立不等式求解橢圓離心率的問題,屬于基礎題.6、C【解析】所對應的點為(-1,-2)位于第三象限.【考點定位】本題只考查了復平面的概念,屬于簡單題.7、D【解析】
根據(jù)題意,是一個等比數(shù)列模型,設,由,解得,再求和.【詳解】根據(jù)題意,這是一個等比數(shù)列模型,設,所以,解得,所以.故選:D【點睛】本題主要考查等比數(shù)列的實際應用,還考查了建模解模的能力,屬于中檔題.8、B【解析】
由三視圖確定原幾何體是正三棱柱,由此可求得體積.【詳解】由題意原幾何體是正三棱柱,.故選:B.【點睛】本題考查三視圖,考查棱柱的體積.解題關鍵是由三視圖不愿出原幾何體.9、A【解析】
先利用換底公式將對數(shù)都化為以2為底,利用對數(shù)函數(shù)單調(diào)性可比較,再由中間值1可得三者的大小關系.【詳解】,,,因此,故選:A.【點睛】本題主要考查了利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小,屬于基礎題.10、D【解析】
利用函數(shù)的單調(diào)性、不等式的基本性質(zhì)即可得出.【詳解】∵,∴,,,.故選:D.【點睛】本小題主要考查利用函數(shù)的單調(diào)性比較大小,考查不等式的性質(zhì),屬于基礎題.11、B【解析】
先判斷函數(shù)的奇偶性,再取特殊值,利用零點存在性定理判斷函數(shù)零點分布情況,即可得解.【詳解】由題可知定義域為,,是偶函數(shù),關于軸對稱,排除C,D.又,,在必有零點,排除A.故選:B.【點睛】本題考查了函數(shù)圖象的判斷,考查了函數(shù)的性質(zhì),屬于中檔題.12、C【解析】
根據(jù)正弦型函數(shù)的圖象得到,結合圖像變換知識得到答案.【詳解】由圖象知:,∴.又時函數(shù)值最大,所以.又,∴,從而,,只需將的圖象向左平移個單位即可得到的圖象,故選C.【點睛】已知函數(shù)的圖象求解析式(1).(2)由函數(shù)的周期求(3)利用“五點法”中相對應的特殊點求,一般用最高點或最低點求.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
構造,先利用定義判斷的奇偶性,再利用導數(shù)判斷其單調(diào)性,轉化為,結合奇偶性,單調(diào)性求解不等式即可.【詳解】令,則是上的偶函數(shù),,則在上遞減,于是在上遞增.由得,即,于是,則,解得.故答案為:【點睛】本題考查了利用函數(shù)的奇偶性、單調(diào)性解不等式,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于較難題.14、13【解析】根據(jù)題意得到:a=0,b=1,i=2A=1,b=2,i=4,A=3,b=5,i=6,A=8,b=13,i=8不滿足條件,故得到此時輸出的b值為13.故答案為13.15、【解析】
利用直線與圓相切求出斜率,得到直線的方程,幾何法求出【詳解】解:直線與圓相切,圓心為由,得或,當時,到直線的距離,不成立,當時,與圓相交于,兩點,到直線的距離,故答案為.【點睛】考查直線與圓的位置關系,相切和相交問題,屬于中檔題.16、2【解析】
利用二項展開式的通項公式,二項式系數(shù)的性質(zhì),求得的值.【詳解】展開式通項為:且的展開式中的系數(shù)比的系數(shù)大,即:解得:(舍去)或本題正確結果:【點睛】本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析【解析】
(1)對函數(shù)進行求導,可以求出曲線在點處的切線,利用直線的斜截式方程可以求出曲線的切線方程;(2)對函數(shù)進行求導,對實數(shù)進行分類討論,可以求出函數(shù)的單調(diào)區(qū)間.【詳解】(1)當時,函數(shù)定義域為,,所以切線方程為;(2)當時,函數(shù)定義域為,在上單調(diào)遞增當時,恒成立,函數(shù)定義域為,又在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增當時,函數(shù)定義域為,在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增當時,設的兩個根為且,由韋達定理易知兩根均為正根,且,所以函數(shù)的定義域為,又對稱軸,且,在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增【點睛】本題考查了曲線切線方程的求法,考查了利用函數(shù)的導數(shù)討論函數(shù)的單調(diào)性問題,考查了分類思想.18、(1);(2).【解析】
(1)利用導數(shù)的幾何意義求出切線的斜率,再求出切點坐標即可得在點處的切線方程;(2)令,然后利用導數(shù)并根據(jù)a的情況研究函數(shù)的單調(diào)性和最值.【詳解】(1),,∴,又,∴切線方程為,即.(2)令,,①若,則在上單調(diào)遞減,又,∴恒成立,∴在上單調(diào)遞減,又,∴恒成立.②若,令,∴,易知與在上單調(diào)遞減,∴在上單調(diào)遞減,,當即時,在上恒成立,∴在上單調(diào)遞減,即在上單調(diào)遞減,又,∴恒成立,∴在上單調(diào)遞減,又,∴恒成立,當即時,使,∴在遞增,此時,∴,∴在遞增,∴,不合題意.綜上,實數(shù)的取值范圍是.【點睛】本題主要考查導數(shù)的幾何意義及構造函數(shù)解決含參數(shù)的不等式恒成立時求參數(shù)的取值范圍問題,第二問的難點是構造函數(shù)后二次求導問題,對分類討論思想及化歸與等價轉化思想要求較高,難度較大,屬拔高題.19、(1)或(2)【解析】
(1)分類討論去絕對值即可;(2)根據(jù)條件分a<﹣3和a≥﹣3兩種情況,由[﹣2,1]?A建立關于a的不等式,然后求出a的取值范圍.【詳解】(1)當a=﹣1時,f(x)=|x+1|.∵f(x)≤|2x+1|﹣1,∴當x≤﹣1時,原不等式可化為﹣x﹣1≤﹣2x﹣2,∴x≤﹣1;當時,原不等式可化為x+1≤﹣2x﹣2,∴x≤﹣1,此時不等式無解;當時,原不等式可化為x+1≤2x,∴x≥1,綜上,原不等式的解集為{x|x≤﹣1或x≥1}.(2)當a<﹣3時,,∴函數(shù)g(x)的值域A={x|3+a≤x≤﹣a﹣3}.∵[﹣2,1]?A,∴,∴a≤﹣5;當a≥﹣3時,,∴函數(shù)g(x)的值域A={x|﹣a﹣3≤x≤3+a}.∵[﹣2,1]?A,∴,∴a≥﹣1,綜上,a的取值范圍為(﹣∞,﹣5]∪[﹣1,+∞).【點睛】本題考查了絕對值不等式的解法和利用集合間的關于求參數(shù)的取值范圍,考查了轉化思想和分類討論思想,屬于中檔題.20、(1)(2).【解析】
(1)利用離心率和橢圓經(jīng)過的點建立方程組,求解即可.(2)把面積之比轉化為縱坐標之間的關系,聯(lián)立方程結合韋達定理可求.【詳解】解:(1)設焦距為2c,由題意知:;解得,所以橢圓的方程為.(2)由(1)知:F(﹣1,0),設l:,D(,),E(,),<0<①,,,②;③;由①②得:,,代入③得:,又,故,因此,直線l的方程為.【點睛】本題主要考查橢圓方程的求解及橢圓中的面積問題,橢圓方程一般利用待定系數(shù)法,建立方程組進行求解,面積問題的合理轉化是求解的關鍵,側重考查數(shù)學運算的核心素養(yǎng).21、(1)證明見解析;(2).【解析】
(1)連接,連接、交于點,并連接,則點為的中點,利用中位線的性質(zhì)得出,,利用空間平行線的傳遞性可得出,然后利用線面平行的判定定理可證得結論;(2)推導出平面,并計算出,由此可得出到平面的距離為,即可得解.【詳解】(1)連接,連接、交于點,并連接,則點為的中點,、分別為、的中點,則,同理可得,.平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代商業(yè)綜合體的綠色交通與停車設計
- 現(xiàn)代商業(yè)街區(qū)的電氣設計與規(guī)劃思路
- 生物識別技術在醫(yī)療健康領域的突破
- 海運物流的現(xiàn)代化進程與技術創(chuàng)新
- 現(xiàn)代藥店的供應鏈協(xié)同與優(yōu)化
- 9 漂浮的船 說課稿-2023-2024學年科學六年級下冊冀人版
- 《我的發(fā)明創(chuàng)意》說課稿 -2024-2025學年科學六年級上冊湘科版
- 5《雷鋒叔叔你在哪里》說課稿-2023-2024學年統(tǒng)編版語文二年級下冊
- 中山廣東中山市檔案館招聘雇員筆試歷年參考題庫附帶答案詳解
- Module 3 Unit 2 What's the elephant doing?(說課稿)-2024-2025學年外研版(三起)英語四年級上冊
- 消防器材與消防設施的維護與檢查
- 2024年度碳陶剎車盤分析報告
- 四川省綿陽市2025屆高三上學期第二次診斷性考試語文試題(含答案)
- 2025年1月 浙江首考英語試卷
- 2025年1月廣西2025屆高三調(diào)研考試英語試卷(含答案詳解)
- 2024年中考二輪專題復習道德與法治主觀題答題技巧(小論文)之演講稿
- 質(zhì)檢工作計劃書2025質(zhì)檢部工作計劃范文
- 《復旦大學》課件
- 《纏論的實戰(zhàn)技法》課件
- 承包魚塘維修施工合同范例
- 耶魯綜合抽動嚴重程度量表正式版
評論
0/150
提交評論