版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第05講指數(shù)與指數(shù)函數(shù)(精講+精練)目錄第一部分:知識點精準記憶第二部分:課前自我評估測試第三部分:典型例題剖析高頻考點一:指數(shù)與指數(shù)冪的運算高頻考點二:指數(shù)函數(shù)的概念高頻考點三:指數(shù)函數(shù)的圖象①判斷指數(shù)型函數(shù)的圖象;②根據(jù)指數(shù)型函數(shù)圖象求參數(shù)③指數(shù)型函數(shù)圖象過定點問題;④指數(shù)函數(shù)圖象應(yīng)用高頻考點四:指數(shù)(型)函數(shù)定義域高頻考點五:指數(shù)(型)函數(shù)的值域①指數(shù)函數(shù)在區(qū)間SKIPIF1<0上的值域;②指數(shù)型復(fù)合函數(shù)值域③根據(jù)指數(shù)函數(shù)值域(最值)求參數(shù)高頻考點六:指數(shù)函數(shù)單調(diào)性①判斷指數(shù)函數(shù)單調(diào)性;②由指數(shù)(型)函數(shù)單調(diào)性求參數(shù)③判斷指數(shù)型復(fù)合函數(shù)單調(diào)性;④比較大?、莞鶕?jù)指數(shù)函數(shù)單調(diào)性解不等式高頻考點七:指數(shù)函數(shù)的最值①求已知指數(shù)型函數(shù)的值域②根據(jù)指數(shù)函數(shù)最值求參數(shù)③含參指數(shù)(型)函數(shù)最值第四部分:高考真題感悟第五部分:第05講指數(shù)與指數(shù)函數(shù)(精練)第一部分:知識點精準記憶第一部分:知識點精準記憶1、根式的概念及性質(zhì)(1)概念:式子SKIPIF1<0叫做根式,其中SKIPIF1<0叫做根指數(shù),SKIPIF1<0叫做被開方數(shù).(2)性質(zhì):①SKIPIF1<0(SKIPIF1<0且SKIPIF1<0);②當SKIPIF1<0為奇數(shù)時,SKIPIF1<0;當SKIPIF1<0為偶數(shù)時,SKIPIF1<02、分數(shù)指數(shù)冪①正數(shù)的正分數(shù)指數(shù)冪的意義是SKIPIF1<0(SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0);②正數(shù)的負分數(shù)指數(shù)冪的意義是SKIPIF1<0(SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0);③0的正分數(shù)指數(shù)冪等于0;0的負分數(shù)指數(shù)冪沒有意義.3、指數(shù)冪的運算性質(zhì)①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0.4、指數(shù)函數(shù)及其性質(zhì)(1)指數(shù)函數(shù)的概念函數(shù)SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)叫做指數(shù)函數(shù),其中指數(shù)SKIPIF1<0是自變量,函數(shù)的定義域是SKIPIF1<0.(2)指數(shù)函數(shù)SKIPIF1<0的圖象和性質(zhì)底數(shù)SKIPIF1<0SKIPIF1<0圖象性質(zhì)定義域為SKIPIF1<0,值域為SKIPIF1<0圖象過定點SKIPIF1<0當SKIPIF1<0時,恒有SKIPIF1<0;當SKIPIF1<0時,恒有SKIPIF1<0當SKIPIF1<0時,恒有SKIPIF1<0;當SKIPIF1<0時,恒有SKIPIF1<0在定義域SKIPIF1<0上為增函數(shù)在定義域SKIPIF1<0上為減函數(shù)注意指數(shù)函數(shù)SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)的圖象和性質(zhì)與SKIPIF1<0的取值有關(guān),應(yīng)分SKIPIF1<0與SKIPIF1<0來研究第二部分:課前自我評估測試第二部分:課前自我評估測試一、判斷題1.(2021·江西·貴溪市實驗中學高二階段練習)函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的圖象必過定點SKIPIF1<0()【答案】正確解:令SKIPIF1<0得,SKIPIF1<0,此時SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0的圖象必過定點SKIPIF1<0,故答案為:正確2.(2021·江西·貴溪市實驗中學高二階段練習)SKIPIF1<0
()【答案】正確SKIPIF1<0,判斷正確故答案為:正確.二、單選題1.(2022·寧夏·銀川一中高二期末(文))函數(shù)SKIPIF1<0在SKIPIF1<0的最大值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C解:因為函數(shù)SKIPIF1<0是單調(diào)遞增函數(shù),所以函數(shù)SKIPIF1<0也是單調(diào)遞增函數(shù),所以SKIPIF1<0.故選:C2.(2022·江蘇南通·高一期末)已知指數(shù)函數(shù)SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0),且SKIPIF1<0,則SKIPIF1<0的取值范圍()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A解:由指數(shù)函數(shù)SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0),且SKIPIF1<0根據(jù)指數(shù)函數(shù)單調(diào)性可知SKIPIF1<0所以SKIPIF1<0,故選:A3.(2022·北京·高三專題練習)若函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的圖像經(jīng)過定點P,則點P的坐標是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B因為SKIPIF1<0,所以當SKIPIF1<0,即SKIPIF1<0時,函數(shù)值為定值0,所以點P坐標為SKIPIF1<0.另解:因為SKIPIF1<0可以由SKIPIF1<0向右平移一個單位長度后,再向下平移1個單位長度得到,由SKIPIF1<0過定點SKIPIF1<0,所以SKIPIF1<0過定點SKIPIF1<0.故選:B4.(2022·河北廊坊·高一期末)指數(shù)函數(shù)SKIPIF1<0在R上單調(diào)遞減,則實數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D因為指數(shù)函數(shù)SKIPIF1<0在R上單調(diào)遞減,所以SKIPIF1<0,得SKIPIF1<0,所以實數(shù)a的取值范圍是SKIPIF1<0,故選:D5.(2022·北京·高三專題練習)若函數(shù)SKIPIF1<0是指數(shù)函數(shù),則SKIPIF1<0等于(
)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C由題意可得SKIPIF1<0,解得SKIPIF1<0.故選:C.第三部分:典型例題剖析第三部分:典型例題剖析高頻考點一:指數(shù)與指數(shù)冪的運算1.(2022·廣東肇慶·高一期末)設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.1 C.2 D.3【答案】B∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故選:B2.(2022·上海楊浦·高一期末)設(shè)SKIPIF1<0,下列計算中正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】CSKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0故選:C3.(2022·廣東深圳·高一期末)下列根式與分數(shù)指數(shù)冪的互化正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B解:對A:SKIPIF1<0,故選項A錯誤;對B:SKIPIF1<0,故選項B正確;對C:SKIPIF1<0,SKIPIF1<0不能化簡為SKIPIF1<0,故選項C錯誤;對D:因為SKIPIF1<0,所以SKIPIF1<0,故選項D錯誤.故選:B.4.(2022·全國·高三專題練習)化簡SKIPIF1<0的結(jié)果為(
)A.-SKIPIF1<0 B.-SKIPIF1<0C.-SKIPIF1<0 D.-6ab【答案】C原式=SKIPIF1<0.故選:C.高頻考點二:指數(shù)函數(shù)的概念1.(2022·浙江·高三專題練習)函數(shù)SKIPIF1<0,且a≠1)的圖象經(jīng)過點SKIPIF1<0,則f(-2)=(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.9【答案】D由SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故選:D.2.(2022·黑龍江·嫩江市第一中學校高一期末)已知指數(shù)函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0的值為(
)A.3 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】BSKIPIF1<0解得SKIPIF1<0,又函數(shù)在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,SKIPIF1<0故選:B3.(2022·全國·高一課時練習)函數(shù)SKIPIF1<0是指數(shù)函數(shù),則(
)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0且SKIPIF1<0【答案】C因為函數(shù)SKIPIF1<0是指數(shù)函數(shù)所以SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,解得SKIPIF1<0.故選:C.4.(2022·浙江·高三專題練習)若指數(shù)函數(shù)SKIPIF1<0在[-1,1]上的最大值與最小值的差是1,則底數(shù)a等于A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D指數(shù)函數(shù)SKIPIF1<0在[-1,1]上的最大值與最小值的差是1則SKIPIF1<0
解得a=SKIPIF1<0故選D高頻考點三:指數(shù)函數(shù)的圖象①判斷指數(shù)型函數(shù)的圖象1.(2022·上海市復(fù)興高級中學高一階段練習)函數(shù)SKIPIF1<0的大致圖像是(
)A.B.C.D.【答案】C解:由函數(shù)SKIPIF1<0,得SKIPIF1<0,所以函數(shù)為偶函數(shù),故排除AB,當SKIPIF1<0時,SKIPIF1<0,所以函數(shù)在SKIPIF1<0上是減函數(shù),故排除D.故選:C.2.(2022·上海市進才中學高二階段練習)函數(shù)SKIPIF1<0的圖像的大致形狀是(
)A. B.C.D.【答案】D根據(jù)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0是減函數(shù),SKIPIF1<0是增函數(shù).SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增故選:D.3.(2022·全國·高三專題練習)已知0<m<n<1,則指數(shù)函數(shù)①y=mx,②y=nx的圖象為().A. B.C.D.【答案】C試題分析:由,在上單調(diào)遞減,所以排除;令,,C正確.4.(2022·全國·高三專題練習(文))函數(shù)SKIPIF1<0的圖象可能是
()A. B.C. D.【答案】C①當SKIPIF1<0時,函數(shù)SKIPIF1<0可以看做函數(shù)SKIPIF1<0的圖象向下平移SKIPIF1<0個單位,由于SKIPIF1<0,則A錯誤;又SKIPIF1<0時,SKIPIF1<0,則函數(shù)SKIPIF1<0過點SKIPIF1<0,故B錯誤;②當SKIPIF1<0時,函數(shù)SKIPIF1<0可以看做函數(shù)SKIPIF1<0的圖象向下平移SKIPIF1<0個單位,由于SKIPIF1<0,則D錯誤;又SKIPIF1<0時,SKIPIF1<0,則函數(shù)SKIPIF1<0過點SKIPIF1<0,故C正確;故選:C②根據(jù)指數(shù)型函數(shù)圖象求參數(shù)1.(2022·全國·高三專題練習)函數(shù)SKIPIF1<0的圖象如圖所示,其中SKIPIF1<0,SKIPIF1<0為常數(shù),則下列結(jié)論正確的是(
)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】A由SKIPIF1<0,可得SKIPIF1<0,因為由圖像可知函數(shù)是減函數(shù),所以SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故選:A2.(2022·全國·高三專題練習)函數(shù)SKIPIF1<0與SKIPIF1<0的圖象如圖,則下列不等式一定成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C由圖可知,SKIPIF1<0單調(diào)遞增,則SKIPIF1<0;SKIPIF1<0單調(diào)遞減,則SKIPIF1<0,A:SKIPIF1<00不一定成立,如SKIPIF1<0;B:SKIPIF1<0不一定成立,如SKIPIF1<0;C:SKIPIF1<0,成立;D:SKIPIF1<0不成立,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:C.3.(2021·全國·高一專題練習)函數(shù)SKIPIF1<0的圖像如圖所示,其中SKIPIF1<0SKIPIF1<0為常數(shù),則下列結(jié)論正確的是(
)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0 C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】D由函數(shù)SKIPIF1<0的圖像可知,函數(shù)SKIPIF1<0在定義域上單調(diào)遞減,SKIPIF1<0,排除AB選項;分析可知:函數(shù)SKIPIF1<0圖像是由SKIPIF1<0向左平移所得,SKIPIF1<0,SKIPIF1<0.故D選項正確.故選:D4.(2021·全國·高一專題練習)若函數(shù)SKIPIF1<0的圖象如圖所示,則(
)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0 C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】D根據(jù)圖象,函數(shù)SKIPIF1<0是單調(diào)遞減的所以指數(shù)函數(shù)的底SKIPIF1<0根據(jù)圖象的縱截距,令SKIPIF1<0,SKIPIF1<0解得SKIPIF1<0即SKIPIF1<0,SKIPIF1<0故選:D.③指數(shù)型函數(shù)圖象過定點問題1.(2022·吉林·長春市第二中學高一期末)函數(shù)SKIPIF1<0且SKIPIF1<0的圖象恒過定點(
)A.(-2,0) B.(-1,0)C.(0,-1) D.(-1,-2)【答案】A由題意,函數(shù)SKIPIF1<0且SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的圖象過定點SKIPIF1<0.故選:A2.(2022·全國·高三專題練習)若函數(shù)SKIPIF1<0過定點SKIPIF1<0,以SKIPIF1<0為頂點且過原點的二次函數(shù)SKIPIF1<0的解析式為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A對于函數(shù)SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以函數(shù)SKIPIF1<0過定點SKIPIF1<0SKIPIF1<0,設(shè)以SKIPIF1<0SKIPIF1<0為頂點且過原點的二次函數(shù)SKIPIF1<0,因為SKIPIF1<0過原點SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0,所以SKIPIF1<0的解析式為:SKIPIF1<0,故選:A.3.(2022·河南焦作·高一期末)已知函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的圖象過定點SKIPIF1<0,則不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D當SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0,所以不等式為SKIPIF1<0,解得SKIPIF1<0,所以不等式的解集為SKIPIF1<0.故選:D4.(2022·全國·高三專題練習)已知函數(shù)SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)恒過定點SKIPIF1<0,則函數(shù)SKIPIF1<0的圖像不經(jīng)過(
)A.第一象限 B.第二象限C.第三象限 D.第四象限【答案】BSKIPIF1<0且SKIPIF1<0恒過定點SKIPIF1<0SKIPIF1<0則函數(shù)SKIPIF1<0恒過定點SKIPIF1<0且是單調(diào)遞增函數(shù),其圖象不經(jīng)過第二象限.故選:B④指數(shù)函數(shù)圖象應(yīng)用1.(2021·重慶市涪陵第二中學校高一階段練習)函數(shù)SKIPIF1<0的圖象可能是(
)A. B.C. D.【答案】C當SKIPIF1<0時,SKIPIF1<0是減函數(shù),SKIPIF1<0,SKIPIF1<0,D選項錯誤,C選項符合.當SKIPIF1<0時,SKIPIF1<0是增函數(shù),SKIPIF1<0,SKIPIF1<0,AB選項錯誤.故選:C2.(2021·全國·高一課時練習)函數(shù)SKIPIF1<0,且SKIPIF1<0)與SKIPIF1<0的圖像大致是A. B. C. D.【答案】A由題知,直線SKIPIF1<0的斜率為SKIPIF1<0,故排除選項C、D,又由選項A、B中的圖像知SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以A正確,B錯誤.故選A.3.(2021·全國·高一課時練習)若SKIPIF1<0,SKIPIF1<0,則函數(shù)SKIPIF1<0的圖像一定經(jīng)過(
)A.第一、二、三象限 B.第一、三、四象限C.第二、三、四象限 D.第一、二、四象限【答案】A由SKIPIF1<0可得函數(shù)SKIPIF1<0的圖像單調(diào)遞增,且過第一、二象限,由SKIPIF1<0可得把SKIPIF1<0的圖像向下平移SKIPIF1<0個單位可得SKIPIF1<0的圖像,結(jié)合SKIPIF1<0可知,圖像過第一、二、三象限.故答案為A高頻考點四:指數(shù)(型)函數(shù)定義域1.(2022·全國·高三專題練習)函數(shù)SKIPIF1<0的定義域是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B解:由題意得:SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,解得:SKIPIF1<0,故函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,故選:B.2.(2022·全國·高三專題練習)函數(shù)SKIPIF1<0的定義域為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D由SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0.故選:D.3.(2021·江蘇·高一專題練習)函數(shù)y=SKIPIF1<0的定義域是(-∞,0],則a的取值范圍為()A.a(chǎn)>0 B.a(chǎn)<1C.0<a<1 D.a(chǎn)≠1【答案】C要使函數(shù)SKIPIF1<0且SKIPIF1<0有意義,則SKIPIF1<0,即SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,因為SKIPIF1<0的定義域為SKIPIF1<0所以可得SKIPIF1<0符合題意,SKIPIF1<0的取值范圍為SKIPIF1<0,故選C.4.(2021·廣西河池·高一階段練習)設(shè)函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的定義域為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A由SKIPIF1<0即SKIPIF1<0可得SKIPIF1<0所以SKIPIF1<0的定義域為SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,所以函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,故選:A.高頻考點五:指數(shù)(型)函數(shù)的值域①指數(shù)函數(shù)在區(qū)間SKIPIF1<0上的值域1.(2022·全國·高一)當xSKIPIF1<0[-1,1]時,函數(shù)f(x)=3x-2的值域為________【答案】SKIPIF1<0因為xSKIPIF1<0[-1,1],所以SKIPIF1<0,所以SKIPIF1<0,所以f(x)=3x-2的值域為SKIPIF1<0,故答案為:SKIPIF1<02.(2022·全國·高三專題練習)已知函數(shù)f(x)=9x﹣aSKIPIF1<03x+1+a2(x∈[0,1],a∈R),記f(x)的最大值為g(a).(Ⅰ)求g(a)解析式;(Ⅱ)若對于任意t∈[﹣2,2],任意a∈R,不等式g(a)≥﹣m2+tm恒成立,求實數(shù)m的范圍.【答案】(Ⅰ)g(a)=SKIPIF1<0;(Ⅱ)m≤﹣SKIPIF1<0或m≥SKIPIF1<0.解:(Ⅰ)令u=3x∈[1,3],則f(x)=h(u)=u2﹣3au+a2.當SKIPIF1<0≤2,即a≤SKIPIF1<0時,g(a)=h(u)max=h(3)=a2﹣9a+9;當SKIPIF1<0,即a>SKIPIF1<0時,g(a)=h(u)max=h(1)=a2﹣3a+1;故g(a)=SKIPIF1<0;(Ⅱ)當a≤SKIPIF1<0時,g(a)=a2﹣9a+9,g(a)min=g(SKIPIF1<0)=﹣SKIPIF1<0;當aSKIPIF1<0時,g(a)=a2﹣3a+1,g(a)min=g(SKIPIF1<0)=﹣SKIPIF1<0;因此g(a)min=g(SKIPIF1<0)=﹣SKIPIF1<0;對于任意任意a∈R,不等式g(a)≥﹣m2+tm恒成立等價于﹣m2+tm≤﹣SKIPIF1<0.令h(t)=mt﹣m2,由于h(t)是關(guān)于t的一次函數(shù),故對于任意t∈[﹣2,2]都有h(t)≤﹣SKIPIF1<0等價于SKIPIF1<0,即SKIPIF1<0,解得m≤﹣SKIPIF1<0或m≥SKIPIF1<0.3.(2022·全國·高三專題練習)已知函數(shù)SKIPIF1<0.當SKIPIF1<0時,求函數(shù)SKIPIF1<0在SKIPIF1<0的值域;【答案】(1)SKIPIF1<0;(1)當SKIPIF1<0時,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,故值域為SKIPIF1<0;4.(2022·江西省豐城中學高一開學考試)函數(shù)SKIPIF1<0且SKIPIF1<0,函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的解析式;(2)若關(guān)于SKIPIF1<0的方程SKIPIF1<0在區(qū)間SKIPIF1<0上有實數(shù)根,求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.(1)由SKIPIF1<0,可得:SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0;(2)由SKIPIF1<0,可得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,則原問題等價于y=m與y=h(t)=SKIPIF1<0在SKIPIF1<0上有交點,數(shù)形結(jié)合可知m∈[h(SKIPIF1<0),h(4)]=SKIPIF1<0.故實數(shù)SKIPIF1<0的取值范圍為:SKIPIF1<0.②指數(shù)型復(fù)合函數(shù)值域1.(2022·山西·臨汾第一中學校高一期末)函數(shù)SKIPIF1<0的值域為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D令SKIPIF1<0,則SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴函數(shù)SKIPIF1<0的值域為SKIPIF1<0,故選:D2.(2022·湖南邵陽·高一期末)函數(shù)SKIPIF1<0的值域為______.【答案】SKIPIF1<0由于SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0的值域為SKIPIF1<0.故答案為:SKIPIF1<0.3.(2022·全國·高三專題練習)函數(shù)SKIPIF1<0的值域是___________.【答案】SKIPIF1<0因為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0故答案為:SKIPIF1<0.4.(2022·河南·洛寧縣第一高級中學高一階段練習)已知函數(shù)SKIPIF1<0.(1)當SKIPIF1<0時,求SKIPIF1<0的值域;(2)若SKIPIF1<0有最大值16,求SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(1)當SKIPIF1<0時,SKIPIF1<0.因為SKIPIF1<0在R上單調(diào)遞增,且SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0的值域為SKIPIF1<0.(2)令SKIPIF1<0,因為函數(shù)SKIPIF1<0在其定義域內(nèi)單調(diào)遞增,所以要使函數(shù)SKIPIF1<0有最大值16,則SKIPIF1<0的最大值為4,故SKIPIF1<0解得SKIPIF1<0.故SKIPIF1<0的值為SKIPIF1<0.5.(2022·全國·高三專題練習)已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0在SKIPIF1<0上的值域;【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0.【詳解】(1)令SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,則可將原函數(shù)轉(zhuǎn)化為SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0;SKIPIF1<0在SKIPIF1<0上的值域為SKIPIF1<0;③根據(jù)指數(shù)函數(shù)值域(最值)求參數(shù)1.(2022·廣東湛江·高一期末)已知函數(shù)SKIPIF1<0的定義域和值域都是SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.SKIPIF1<0【答案】A當SKIPIF1<0時,SKIPIF1<0,方程組無解當SKIPIF1<0時,SKIPIF1<0,解得SKIPIF1<0SKIPIF1<0故選:A.2.(2022·遼寧鞍山·高一期末)若函數(shù)SKIPIF1<0的值域為SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C因為SKIPIF1<0,且SKIPIF1<0的值域為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故選:C.3.(2022·全國·高一)已知函數(shù)SKIPIF1<0且SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值比最小值大SKIPIF1<0,求SKIPIF1<0的值.【答案】SKIPIF1<0或SKIPIF1<0SKIPIF1<0時,SKIPIF1<0是減函數(shù),SKIPIF1<0,SKIPIF1<0;SKIPIF1<0時,SKIPIF1<0是增函數(shù),SKIPIF1<0,SKIPIF1<0.綜上,SKIPIF1<0或SKIPIF1<0.4.(2022·湖南·高一期末)已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的值域;(2)當SKIPIF1<0時,SKIPIF1<0的最大值為7,求SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0或SKIPIF1<0(1)設(shè)SKIPIF1<0,則SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0的值域為SKIPIF1<0.(2)函數(shù)SKIPIF1<0圖象的對稱軸為直線SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去)所以SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),因為SKIPIF1<0,所以SKIPIF1<0.綜上,SKIPIF1<0或SKIPIF1<0.5.(2022·全國·高三專題練習)已知函數(shù)SKIPIF1<0(SKIPIF1<0為常數(shù),SKIPIF1<0)是SKIPIF1<0上的奇函數(shù).(1)求實數(shù)SKIPIF1<0的值;(2)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的值域為SKIPIF1<0,求SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(1)由SKIPIF1<0是奇函數(shù)得SKIPIF1<0,SKIPIF1<0,此時SKIPIF1<0是奇函數(shù);(2)由復(fù)合函數(shù)的性質(zhì)得SKIPIF1<0在定義域內(nèi)是增函數(shù),所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0或SKIPIF1<0(舍去),SKIPIF1<0,所以SKIPIF1<0.高頻考點六:指數(shù)函數(shù)單調(diào)性①判斷指數(shù)函數(shù)單調(diào)性1.(2022·廣西南寧·高一期末)設(shè)函數(shù)SKIPIF1<0,則SKIPIF1<0(
)A.是偶函數(shù),且在SKIPIF1<0單調(diào)遞增 B.是偶函數(shù),且在SKIPIF1<0單調(diào)遞減C.是奇函數(shù),且在SKIPIF1<0單調(diào)遞增 D.是奇函數(shù),且在SKIPIF1<0單調(diào)遞減【答案】D函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0為奇函數(shù).而SKIPIF1<0,可知函數(shù)SKIPIF1<0為定義域SKIPIF1<0上的減函數(shù),因此,函數(shù)SKIPIF1<0為奇函數(shù),且是SKIPIF1<0上的減函數(shù).故選:D.2.(2022·福建寧德·高一期末)已知SKIPIF1<0是SKIPIF1<0上的奇函數(shù),且SKIPIF1<0.(1)求SKIPIF1<0的解析式;(2)判斷SKIPIF1<0的單調(diào)性,并根據(jù)定義證明.【答案】(1)SKIPIF1<0(2)見解析(1)已知SKIPIF1<0是SKIPIF1<0上的奇函數(shù),且SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,(2)根據(jù)指數(shù)函數(shù)的單調(diào)性可判斷得SKIPIF1<0為增函數(shù).下證明:設(shè)SKIPIF1<0是SKIPIF1<0上任意給定的兩個實數(shù),且SKIPIF1<0,
則SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0
SKIPIF1<0函數(shù)SKIPIF1<0在SKIPIF1<0上是單調(diào)遞增函數(shù)3.(2021·貴州·六盤水紅橋?qū)W校高一階段練習)若函數(shù)SKIPIF1<0是指數(shù)函數(shù)(1)求SKIPIF1<0,SKIPIF1<0的值;(2)求解不等式SKIPIF1<0【答案】(1)SKIPIF1<0且SKIPIF1<0;(2)SKIPIF1<0;(1)因函數(shù)SKIPIF1<0是指數(shù)函數(shù),則SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0的值是:SKIPIF1<0且SKIPIF1<0.(2)由(1)知,SKIPIF1<0,SKIPIF1<0,則函數(shù)SKIPIF1<0在R上單調(diào)遞增,由SKIPIF1<0得:SKIPIF1<0,解得SKIPIF1<0,所以不等式SKIPIF1<0的解集是:SKIPIF1<0.4.(2021·全國·高一期末)設(shè)函數(shù)SKIPIF1<0,(1)判斷SKIPIF1<0的單調(diào)性,并證明你的結(jié)論;【答案】(1)增函數(shù),證明見解析;(1)依題意,函數(shù)SKIPIF1<0定義域為R,SKIPIF1<0是R上的增函數(shù),SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,因SKIPIF1<0為R上的增函數(shù),則由SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,于是得SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0是SKIPIF1<0上的增函數(shù).②由指數(shù)(型)函數(shù)單調(diào)性求參數(shù)1.(2022·遼寧朝陽·高一開學考試)若函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A∵函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,∴SKIPIF1<0,解得SKIPIF1<0,實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:A.2.(2022·內(nèi)蒙古·赤峰二中高一期末(文))若函數(shù)SKIPIF1<0是R上的減函數(shù),則實數(shù)a的取值范圍是___.【答案】SKIPIF1<0由題知SKIPIF1<0.故答案為:SKIPIF1<0.3.(2022·河北張家口·高一期末)已知函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則實數(shù)SKIPIF1<0的取值范圍是______.【答案】SKIPIF1<0因為分段函數(shù)在SKIPIF1<0上單調(diào)遞減,所以每段都單調(diào)遞減,即SKIPIF1<0,并且在分界點處需滿足SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0.故答案為:SKIPIF1<04.(2022·湖南·高一課時練習)若函數(shù)SKIPIF1<0是指數(shù)函數(shù),且為指數(shù)增長型函數(shù)模型,則實數(shù)SKIPIF1<0________.【答案】1依題意知SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0(舍SKIPIF1<0)故答案為:15.(2022·安徽·歙縣教研室高一期末)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上為增函數(shù),則實數(shù)SKIPIF1<0的取值范圍為______.【答案】SKIPIF1<0由復(fù)合函數(shù)的同增異減性質(zhì)可得,SKIPIF1<0在SKIPIF1<0上嚴格單調(diào)遞減,二次函數(shù)開口向上,對稱軸為SKIPIF1<0所以SKIPIF1<0,即SKIPIF1<0故答案為:SKIPIF1<06.(2022·湖南·高一課時練習)若函數(shù)SKIPIF1<0是區(qū)間SKIPIF1<0上的減函數(shù),求實數(shù)SKIPIF1<0的取值范圍.【答案】SKIPIF1<0函數(shù)SKIPIF1<0是區(qū)間SKIPIF1<0上的減函數(shù),故SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.③判斷指數(shù)型復(fù)合函數(shù)單調(diào)性1.(2022·安徽省蚌埠第三中學高一開學考試)函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D解:因為函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,函數(shù)SKIPIF1<0在定義域內(nèi)是單調(diào)遞減函數(shù),所以,根據(jù)復(fù)合函數(shù)單調(diào)性法則“同增異減”得SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0.故選:D2.(2022·河南·商丘市第一高級中學高一開學考試)已知函數(shù)SKIPIF1<0,且對于任意的SKIPIF1<0,都有SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B依題可知函數(shù)SKIPIF1<0在SKIPIF1<0上是增函數(shù),∴SKIPIF1<0,解得SKIPIF1<0.故選:B.3.(2022·寧夏·吳忠中學高一期末)已知函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則實數(shù)SKIPIF1<0的取值范圍是______.【答案】SKIPIF1<0令SKIPIF1<0,可得拋物線的開口向上,且對稱軸為SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在區(qū)間SKIPIF1<0上單調(diào)遞增,又由函數(shù)SKIPIF1<0,根據(jù)復(fù)合函數(shù)的單調(diào)性的判定方法,可得函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在區(qū)間SKIPIF1<0上單調(diào)遞減,因為函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0,可得實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.4.(2022·河南·林州一中高一開學考試)已知函數(shù)SKIPIF1<0是奇函數(shù).(1)求SKIPIF1<0的值;(2)判斷并證明函數(shù)SKIPIF1<0的單調(diào)性.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0在R上單調(diào)遞增,證明見解析.【解析】(1)由題設(shè),SKIPIF1<0,整理可得:SKIPIF1<0恒成立,解得SKIPIF1<0.(2)由(1)知:SKIPIF1<0,在R上單調(diào)遞增,證明如下:令SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0在R上單調(diào)遞增.④比較大小1.(2022·廣東汕尾·高一期末)若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】ASKIPIF1<0,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外聘人員合同
- 2022年《魯濱遜漂流記》的閱讀收獲范文5篇
- 經(jīng)營權(quán)及商品轉(zhuǎn)讓合同
- 石材加工合同
- 荒山租賃合同
- 二零二五年度2025安保員聘用及反恐防暴能力提升合同
- 2024年聚酯碳酸項目可行性研究報告
- 2024年示教陳列柜項目可行性研究報告
- 教師實習周記范文【5篇】
- 2024年烤漆固化促進劑項目可行性研究報告
- (新版)工業(yè)機器人系統(tǒng)操作員(三級)職業(yè)鑒定理論考試題庫(含答案)
- 食材配送服務(wù)方案(技術(shù)方案)
- 課件:《中華民族共同體概論》第一講 中華民族共同體基礎(chǔ)理論
- 2024-2025學年安徽省合肥市蜀山區(qū)數(shù)學四年級第一學期期末質(zhì)量檢測試題含解析
- 離婚協(xié)議書模板可打印(2024版)
- 2024國家開放大學電大??啤东F醫(yī)基礎(chǔ)》期末試題及答案試卷號2776
- 廠區(qū)保潔服務(wù)投標方案【2024版】技術(shù)方案
- 養(yǎng)老機構(gòu)績效考核及獎勵制度
- 龍巖市2022-2023學年七年級上學期期末生物試題【帶答案】
- DB32-T 4750-2024 模塊化裝配式污水處理池技術(shù)要求
- 企業(yè)員工績效管理與員工工作動機的激發(fā)
評論
0/150
提交評論