艾昆緯-通過改進(jìn)的數(shù)據(jù)和分析方法確保企業(yè)卓越 Ensuring Enterprise Excellence Through an Evolved Approach to Data and Analytics 2024_第1頁(yè)
艾昆緯-通過改進(jìn)的數(shù)據(jù)和分析方法確保企業(yè)卓越 Ensuring Enterprise Excellence Through an Evolved Approach to Data and Analytics 2024_第2頁(yè)
艾昆緯-通過改進(jìn)的數(shù)據(jù)和分析方法確保企業(yè)卓越 Ensuring Enterprise Excellence Through an Evolved Approach to Data and Analytics 2024_第3頁(yè)
艾昆緯-通過改進(jìn)的數(shù)據(jù)和分析方法確保企業(yè)卓越 Ensuring Enterprise Excellence Through an Evolved Approach to Data and Analytics 2024_第4頁(yè)
艾昆緯-通過改進(jìn)的數(shù)據(jù)和分析方法確保企業(yè)卓越 Ensuring Enterprise Excellence Through an Evolved Approach to Data and Analytics 2024_第5頁(yè)
已閱讀5頁(yè),還剩28頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

IQVIA

WhitePaper

EnsuringEnterpriseExcellence

ThroughanEvolvedApproachtoDataandAnalytics

TYSONKUEHL,Principal,IQVIAConsulting

VALERIEENG,Assoc.Principal,IQVIAConsultingPATRICKGORMAN,Manager,IQVIAConsulting

Tableofcontents

Introduction1

Improvingtheuseofdataandtoolstodriveimpact1

Understandingyourowndatamaturity3

Whatarethepillarsofanevolveddatastrategy?4

Customer

spotlight8

Closingnote10

HowIQVIAcanhelpyou11

Abouttheauthors12

References14

Introduction

DespitethepromiseofBigDataandAdvancedAnalytics,lifesciences

organizationsfrequentlyremainchallengedbyfundamentalbusinessquestions.Thesechallengesare,inpart,owedtocontinuallyevolvingsocioeconomic,

scientific,andtechnologicalfactors,ormisapplicationofthesenewapproaches.Whilethesearenotnewdevelopments,lifesciencesorganizationsstillstrugglewithtransformingdataintoactionableinsightstoachievecommercialexcellence.Thefrequentreasonforthisisalackofaholisticstrategythatisgrounded

inusecasesthatanorganizationwishestoaddress.Thiswhitepaperoffers

recommendationsfortangibleactionsthatorganizationsshouldprioritizetoturnthisdatastrategyandmanagementchallengeintoadifferentiationopportunity.

Improvingtheuseofdataandtoolstodriveimpact

Healthcaredataisatthecenterofeverylifesciences

organization.Itprovidesinsightsonpatients,providers,andotherstakeholders,whileultimatelydrivingbusinessprioritiesandoperations.Lifesciencesorganizations

devoteteamsandinvestresourcestoprocuring,

managing,andanalyzingdata.Thelifesciencesanalyticsindustrywasestimatedtobe$26.2Bin2023andis

forecasttogrowto$48.4Bby2028,representinga13.5%CAGR.1Furthermore,applicationofnewtechnologies

withinlifesciencesanalyticsisexpectedtogrowatan

evenfasterclipof25.2%CAGR,reaching$8.88Bin2029.2

Whiletheappetiteforinnovativedataapproaches

isthere,Pharmaisstillchallengedwithfeedingthat

appetiteinaneffectiveandefficientmanner.Thus,

theindustryrequiresanevolvedDataandAnalytics

Strategy2.0.Theinflectionpointthattheindustryfacesisashiftfromstandarddataprocurementtoclear

demonstrationofreturnoninvestment(ROI)anddata

valuemaximization.Thisinvolvesthinkingaboutexistingdatathroughnewapproachesandsolutionstomeet

changingbusinesspriorities.

Onepharmaceuticalcompanythathasbeenatthe

forefrontofusingdataasadifferentiatorisNovartis.Sincetakingovertheleadershipreinsin2018,NovartisCEOVasNarasimhanhasmadeafuture-focuseddatastrategyakeypillarofthecorporatestrategy.Thishaspaidoffconsiderablywithmostrecentnetsales+10%andcoreoperatingincome+18%forFY2024.3

|1

“Wehaveonefundamentaladvantageversusourpeers:fiveyearsago,wecreatedan

integrateddatalakewecalleddata42.We’reusingthatdatalaketomoveAIveryquicklyforwardinthecompany...ourdataisorganized,ithasaclearontology,andI’mhopingthatwillleadtomorediscoveriesfasterovertime.”

—VasantNarasimhan,NovartisCEO,speakingwithMSNBC“SquawkontheStreet”July,18,2023.4

Economic,societal,scientific,andregulatorychangeshavecomplicateddataanalysis,butalsoelevatedtheexpectationsfordeepinsight.Thisfurtherhighlightstheneedforanevolveddatastrategy.Asanexample,theIQVIAInstitute’srecentreporton

TrendsinAdult

VaccinationsintheU.S.

revealsthatadults,and

specificallyethnicandracialminoritiesandMedicaidpopulations,continuetohavelowvaccinationsrates.5

Asdiseasesbecomemorecomplexandstakeholders

becomemoredifficulttoreach,thelifesciencesindustrymustcometogethertothinkabout,manage,anduse

datadifferently.

Doingsoentailsnotjustaskingfundamentalquestionsthroughouttheproductlifecycle,butalsoleveragingdataandanalyticsandconnectinginsightsgleaned

throughoutthejourney.

Exhibit1:Pharmafunctionsalongproductjourneyandkeybusinessquestions

Pricingand

reimbursement

PatientIDand

Whatformularytier

prescribing

Patient

Regulatory

amImostlikelytoget

HowdoImaximize

use

Researchand

applications

approvalfor?

launchpotential?

HowdoIensure

innovation

Whatisthemost

DoIhaveanynon-clinical

HowdoImaximize

patientadherence?

Whichofmy

expeditiouspath

trialevidencetosupport

awarenessof,and

Whatnuancesto

pipelineassets

toapproval?

higherreimbursement?

accessto,mytreatment?

patientusageexistina

havethegreatest

Whatgeographies

Whatistheoptimal

Whatismyoptimal

givengeography

chanceofsuccess?

shouldwegotofirst?

rebateprogram?

HCPmessaging?

andwhy?

Clinicaltrials

Howdowedesignthetrialtopositionusfor

thewidestindication,whilealsohavingthebestchanceforsuccess(i.e.,meetingclinicalendpoints)?

Marketingregistration

Whatisthebroadestindicationthat

evidencesupportsformydrug?

Manufactureandsupply

Whatarethebottlenecksinmysupplychain?

Whataremyinventorylevelsanddothey

fluctuateovertime?

WhereshouldIlocatemymanufacturingformaximumefficiency/optimizedproduction?

Distribution/pharmacy

WheredoIhave

bottlenecksinmy

distributionnetworkandwhy?

HowdoIreduce

wastageandaccrualinspecialtypharma?

SafetyandPV

Whatistheadverseevent(AE)trendformydrug?

WhatisthecausalityrelationshipbetweenmydrugandtheAE?

2|EnsuringEnterpriseExcellenceThroughanEvolvedApproachtoDataandAnalytics

Understandingyourowndatamaturity

Thesechangesaren’tjustone-size-fits-allupdates.They,infact,firstrequirecompaniestolookinwardtoassesstheirowndatamaturityandhowittiestotheirproductportfolioinsightneeds,corporatestrategy,andabilitytointeractinameaningfulwaywithinternalandexternalstakeholders.Anevolveddatastrategyisrootedin

thedefinitionofthevalueyourorganizationstrives

toderivefromthedata.Basedonthisself-reflection,yourorganizationmustidentifywhereitliesonthe

datamaturitycurveinordertoassesshowtoprogressonwardandupward.

Today,manyofIQVIA’scustomersarestillinstages1-2,withpocketsofstages3-4incertaintherapeuticareasorgeographies.Thisisunderstandableasprogressingalongthedatamaturitycurveisnoeasyfeat—it

takescommitmentatalllevelsofyourorganization;

investmentintime,resources,andmoney;andappetiteforchange.However,ifyourorganizationsuccessfullyprogressesupthedatamaturitycurve,itwillbeableto:

?Maximizethevalueofexistingdataassetswithdeeperandfasterinsights

?Leveragedata,analytics,insights,andcapabilitiesacrossteams

?Lowercostsondataprocurementandinsightsdelivery

Exhibit2:Organizationaldatamaturitycurve

Insight-drivenculture

Scientifichubfordatainsights

Data-drivencapabilities

Governed

self-serviceaccess

Abilitytorapidly

deploy

technology

platforms

designedto

solvespecificbusinessneeds

Thought

leadershipdrivenbywell-governeddataandahighperformingdatascienceteam

Regularadvocacy

fornew

approachesusingdatascienceandmachinelearning

4

Secure,reliabledatarepository

Datawarehouse/lakeandcuratedsystemswith

well-defined

managementandgovernance

Foundationalsystemfor

reportinganddatascience

2

Accesstodatabasedonlevelofexpertise

Reportingteamfocuseson

operational

analyticsandbusinessusers

runqueriesandextractasneeded

3

Businessunits

workwithdatainanuncoordinatedway,withno

shared

definitions/processes

1

Isolateddataprojects

Lackingdataforanalyticsprojects

Keydatasourcesareinfrequentlycollected,withsignificant

manualerrors

0

Data

driven-insightsareingrainedinprocessesand

accessibleacrossthebusinessto

measureresultsanddriveaction

Seamlessly

integratenew

dataanddevelopinsightsintonew

datapolicies

Abilitytorapidlydrivethe

adoptionofnewdigitalanddataapproaches

acrossthe

organization

5

Datamaturity

|3

Whatarethepillarsofanevolveddatastrategy?

Toachievethedegreeofdatamaturityyourorganizationneedstothrive,thereareafewcriticalelementsyou

shouldseek:

1.Business—Directalignmentwithbusiness

objectivesandgoals

?Aligningdatastrategieswithorganizational

objectives:Adatastrategyshouldbeinlinewiththeoverarchingcorporategoalsanddescribehowdatawillhelpachievethosegoals.

?Keyperformanceindicators(KPIs)shouldbe

establishedtoenabletheorganizationtomonitorprogressagainstgoalsinordertomodifystrategyasnecessary.

2.Governance—Definedandyetdynamicdata

governanceanddataarchitecture

?Dataqualityshouldbeestablished,including

qualitycontrols,datacleansingprocedures,andstandardizeddatadefinitions.Doingsohelpstoensuredataaccuracy,reliability,andcompliance.

?Datamanagementsystemsshouldbeableto

combinedatafromvariedsourcesandmakethem

availablethroughouttheorganizationas‘onesourceoftruth’,althoughaccessibilitymaybedeterminedbyroleandneed.

3.Technology—Enablingadvancedanalyticsand

AI/MLcapabilities

?Dataanalyticstoolsandinfrastructureshould

includeresourcessuitedfortheanalysis,as

wellastechnologyplatformsandinfrastructuretoassemble,process,analyze,andvisualize

increasinglylargeamountsofdataefficientlyandeffectivelywithcapacityforscale.

?Datascienceexpertiseshouldbeacquired,

developed,andempowered—thisincludesthe

individualsthatorganizeandcleansedata,aswellasthosethatdeveloptheprogressiveanalytics

modelstouncovernewinsightsandprovidemoreactionablerecommendations(e.g.,AI,ML,GenAI).

4.Security—Compliancewithglobal/regionaldata

privacyandsecurityrequirements

?Datasecurityisofpreeminentimportancegiventhesensitivenatureoftheinformationbeinganalyzed,andreputational,aswellasfinancial,risktothe

organizationshouldsecuritybecompromised.The

datainfrastructureand/orprocessesshouldincluderobustsecuritymeasuressuchasencryption,accesscontrols,andmonitoringsystems.

?Privacyandconsent,particularlywhenusingpatientdata,isafundamentalrequirementandmustbe

addressed.Thisincludesestablishingprotocolstoensurecompliancewiththemarket’sdataprivacyregulations(e.g.,HIPAA,GDPR,LGPD).Additionally,havingtheabilitytoobtainandmanageappropriateconsentfordatausage.

4|EnsuringEnterpriseExcellenceThroughanEvolvedApproachtoDataandAnalytics

5.Integration—Innovativedatauseandintegration

acrossdatasets

?Tosucceed,companiesmustalwaysbehungryto

innovate.Thisappliestocorporatedatauseaswell.Onecommonapproach,usedbycompaniessuch

asGoogle,isthe70:20:10approachtoinnovation

andtime.Thisinvolvesidentifyingandcategorizingyourprojectsintocoregroups:70%(i.e.,product

launchorlifecyclemanagement),adjacent20%(newapproachesforexistingprocesses,likeML/NLP

application),andtransformative10%(commonlymoreblueskyfordeploymentin2+years).

?Lifesciencescompaniesarestartingtorecognize

theimportanceofnon-traditionaldatause(like

consumerdata),aswellaslearningtoleveragenovelintegrationsacrossdatasetstogleannewinsightsintotheirbusiness.

6.Culture—Acompanymindsetof

continuousimprovement

?Embeddingthedataculturerequiresgenuineculturechangeanddevelopment.Thisincludesleadershipadvocatingforamindsetthatvaluesdata-driven

decisionmaking.Additionalstepsincludepromotingdataliteracyandfluencyacrosstheorganization,

andencouragingexperimentationandinnovationwithdata(whilemaintainingcompliance).

?Beyondthis,organizationsshouldregularlymonitorprocessestocelebrate‘wins’,buildmomentum,

demonstrateprogress,andidentifyfuture

opportunitiestooptimize.Doingsoallowsthe

processestoberefinedasneededinordertoadapttochangingbusinessneedsandnewtechnologies.

Exhibit3:Dataandanalyticsorganizationeffort

10%

20%

70%

TRANSFORMATIONAL

Completelynewdataand

analyticsfornewmarketsandcustomerinsightneeds

ADJACENT

ExpandingfromcoreD&Alaunchneeds:taking

existingdataoranalysis

andgoingtoadeeperlevel(i.e.,individual)

CORE

Incrementalimprovementstoyourcurrentdata

collection,utilization,andanalyticsenvironment

|5

Lookout!It’snothardtogetstuck—

companiesoftenfindthemselvestrappedevenwhentryingtogetitright

Whilethegoalisclear,lifesciencesorganizationsstillstrugglewithdevelopingandimplementingafuture-proofeddatastrategy.

?Inertia:Often,itstartswithorganizations

de-prioritizingdatastrategy.Thefocusremains

onlaunchingproductsandrunningthebusiness.

Near-termgoalsoverridelonger-termgoals.While

uncomfortable,organizationsmustchallenge

themselvestothinkabouthowdatastrategycanhelpthemmeetbusinessobjectivesinthenear-term

(<6months),mid-term(6-18months),andlong-term(18months+).

?Complacency:Othertimes,organizationsstrugglewithalackofcommitmentandresourcing.An

evolveddatastrategyrequiresalignmentbehindandcommitmenttosharedgoals—acrossteamsand

acrosslevels.Thisenablestoolstobedevelopedandimplemented,aswellasashiftincultureandmindsettoleveragedatatogether.

?Lookingonlyinwardinsteadofout:Iforganizationsdorecognizetheimportanceofevolvingtheirdata

strategy,theyoftenstrugglewithwheretostart.

Organizationsareoftenunwillingtolookoutside

oftheirorganizationsforinnovativesolutionsthat

mayrequireinvestmentandnewwaysofthinking.

Organizationsarealsonotengagingwiththebusinesstofindtherightdatastrategyfitforallteams(i.e.,

usecases).Itiscriticaltogroundstrategyinbusinessobjectives,usecases,andkeybusinessquestions.

Doingsoalignsstakeholdersandsetsthedirectionandscopeforallactivities.

Onceorganizationsunderstandtheimportanceof

evolvingtheirdatastrategytomaximizetheimpactofdata,aswellastheinvestmentrequiredtoachievethis,theycanbegintotakethesetangiblesteps.

1.Connectdatastrategytobusinessobjectives

andgoals

Firstthing’sfirst—inordertogetitright,yourteams

haveto“rowtogether.”Thereisaplethoraofhealthcaredataavailablefororganizationstoleverage,andwithoutastrategyyourinsightswillgetlostintheshuffle.Thekeytoderivingmaximizedvalue—andvaluefitforyourorganization—isensuringyourdatastrategyisalignedtoyourbusinessgoals.Unfocuseddataprocurement

andusagewillultimatelyleadtoredundancies,highercosts,andadditionalfrictionfrommanagingthat

extradata.

Beginbyunderstandingyourorganization’sobjectivesandkeybusinessquestions.Onceidentified,youcan

narrowinonthekindsofdatathatwillhelpyouachievethoseobjectiveswithoutdistraction.Forexample,is

thisararediseaseproductlaunchinanopenmarket,newproductlaunchintoacrowdedmarket,ormatureproductabouttoreachLOE?

Whenexecutedwell,organizationscanleverage

actionableinsightsacrossteams.Notjustthat,but

organizationscanalsolowercostsondataprocurementandinsightsdelivery.

6|EnsuringEnterpriseExcellenceThroughanEvolvedApproachtoDataandAnalytics

Exhibit4:IQVIAapproachtodatastrategy

Datastrategyshouldbeginwith,andbedirectlytiedto,organizationalgoalsandkeybusinessquestions

3

What

dataacquisitionandmanagementcapabilitiesarerequired?

1

Whatusecasesdoweneed

tosupport?

Datasource

Datainventory

?Datacatalog

?Dataorganizedbygeography

?Dataorganizedbyfunction

?Dataorganizedbyusecases

?Aggregateddata(Copay,SP,Siteofcare,etc..)

?3rdparty(hospital,claims,labs,demo,EMR)

?Patientsupportprograms

?Registries

?Governmentproviders

?Digitaldevice,digitalcare

?Other(Consumer,etc..)

Existing

businessneeds

Current

Adjacent

Future

Strategic

opportunities

Datagovernance

Datadelivery

?Extractandtransform

?Standardization

?De-identification

?Integration

?Tokenization

?Structured/unstructured

?Storageandexchange

?Privacy

?Access,security

?Compliance

?Quality

?Access

?Stewardshipandpolicies

?Operatingmodel

Long-termgoals

Enablingtechnologies—

APIs,datastreams,cloudconnect

2

Whatanalyticmethodologies

doweutilize?

Data

requirements

Market

requirements

HCP/Patient

requirements

2.Establishgovernanceproceduresandtoolsthat

arefitforpurpose

Anevolveddatastrategymustbebuiltonprocessestogovernpeople,processes,andtechnologies.Thisincludesdefiningrolesandresponsibilities,aswellasdeployingtherighttoolstoequipyourteams.

?Rolesandresponsibilitiesenableteamstosolve

businesschallengeseffectivelyandefficiently.They

definehowteamscanandshouldworktogetherto

findpurposefulsolutionsdesignedtoaddressspecificbusinessquestions.However,toaccomplishthis,rolesandresponsibilitiesmustnotonlybedefined,butalsocodified,disseminated,andenforced.Furthermore,organizationsshouldconsidertheneedforrolesto

evolvetomeetfutureorganizationalneeds.

?Toolsenableteamstocarryouttheirrolesand

responsibilities.Thesetoolsshouldalsoenable

measuresofKPIsandothermetricstogaugesuccessoropportunitiestopivot.Whethertheyaredata

catalogsordashboards,teammustassesswhich

aremostfittomeettheirneeds,whilelookingfor

opportunitiestoleveragethesametoolsacrossteams.

?Processes,whencorrectlyestablished,willhelpyourteamunderstandhowtoaccessthedatatheyneedtoanswertheirquestionsinanefficientmannerontheirown.Establishingthepropertechnologiesenables

yourteam’sabilitytoaccessitsdatainatimelymanner.Establishingtheproperpermissionsandprotocols

ensuresthatonlytherightteamshaveaccessto

relevantdata.

Standardizedandstreamlinedprocesses,roles,

responsibilities,andtoolsestablishthestrongfoundationtoaccelerateinsightsusingthevarietyofdataavailable,fromsyndicated,tocurated,togenerated.

|7

Customerspotlight

Theresultwasaholisticdatacatalogthatenabledteamstounderstandhowdataassetswereused.

Groundingthedatacataloginkeybusiness

questionsenabledidentificationofinsightsthat

couldbeleveragedacrossteamsandofredundantdatasetsbeingprocuredandanalyzedbymultipleteams.Establishinggovernanceofthedatacatalogenabledaccountabilityandcommitmenttonotonlymaintenanceofthetool,butalsotothesharedvalueinthetool.

IQVIArecentlyworkedwithaTop10pharmaceuticalcompanyonits2-3yeardataandanalyticsstrategy.Duringtheinitialassessment,werecognizedtheneedforasingle,business-friendlydatacatalogasastrongfoundationforthemanagementanduseofdata

assetsacrossteamsandbrands.Thecommercialdataandanalyticsteambeganbyassessingkeybusinessprioritiesandcorrespondingbusinessquestions.

Thefindingsweremergedwithaninventoryof

commercialdataassets,includingcharacteristicsandconsiderationsforuseofthedataasset.

3.LeverageadvancedanalyticsandAI/MLandbuild

enablingcapabilities

Lifesciencesorganizationsarefollowingotherindustries

inbuildingadvancedanalyticspractices,including

naturallanguageprocessing(NLP)andartificial

intelligence/machinelearning(AI/ML)solutions..

Ultimately,thesesolutionscanyielddeeperandmorepredictiveinsights.Infact,92%oflifesciencesCIOs

andtechnologyexecutivesbelieveAI/MLwillbethetopgame-changingtechnologyinthenextthreeyears.6

However,itiscriticaltorememberthatadvanced

analyticsandAIaresimplytoolstohelpyouansweryourbusinessquestions—notthesolutionsthemselves.

Althoughwhenleveragedcorrectlyandfitforpurpose,thesetechniquescanyieldinsightsthattraditional

analysescannot.Forexample,AI/MLshoulddrive

NextBestAction

,butshouldnotreplacestrategic

planningorgounchecked.Organizationsmustcarefullyassesstheirbusinesspriorities,correspondingbusinessquestions,andanalyticssolutionsthatarefitforpurpose.

4.Ensurecompliancewithapplicableprivacy

regulations,includingthoseoftheUnitedStates(HIPAA),EuropeanUnion(GDPR),andJapan(APPI)

Perhapsthemostimportantdifferencebetween

healthcareindustrydataandthatofothersisthe

requirementtopreventpatientdatafrombeing

compromised.Morespecifically,HIPAArequiresthat

theconfidentiality,integrity,andavailabilityofpersonalhealthinformation(PHI)beprotected,andsafeguardsbeimplemented.Notably,responsibilityforprotectingPHIcanextendbeyondyourorganizationtoinclude

yourpartnersinthebroaderhealthcareecosystem.

Whichbegsthequestion…Areyourpartnersholding

themselvestothesamestandardsasyourorganization?

TheGDPRisbroaderinthatitdealswithallpersonally

identifiableinformation(PII)acrossindustries,butalsoisfocusedonsafeguardinginformation.

“OurworkwithclientsonAIandMLhasfoundthatlessthan15%oftheeffortisneededto

developanalgorithm,withthevastmajoritybeingonsourcingandpreparingthedata.As

pharmapreparestomaximizegenerativeAI’spotential,theymustevolvetheirgo-forwarddatastrategy.Icallit‘DataStrategy2.0.’Thisincludesbuildingspecificcapabilitiesintotheirdataarchitecture,governance,andprocessingtosupportbroadusecases.”

—TysonKuehl,Principal,IQVIAData&AnalyticsConsulting

8|EnsuringEnterpriseExcellenceThroughanEvolvedApproachtoDataandAnalytics

Whiletherearenotabledifferences,inbroadstrokes,theprivacyregulationshaveasimilarframeworkinthattheyrequire:

?Controlledaccesstosensitivedata

?PHIencryptionwhenstoredandwhentransmitted

?Methodsfordetectingbreachesorchangesininformation

5.Embraceinnovativedatasetsandintegrateacross

datasetstouncoverhiddeninsight

Whilelifesciencesorganizationsoftenareawareof

opportunitiestogaingreaterinsightsfromdifferent

datasets,theycontinuetothinktraditionallyabout,andaskthesamequestionswith,existingdatasets.Asthehealthcarelandscapechanges—intermsofpatient

expectations,diseasecomplexity,workforcecapabilities,andmore—organizationsmustchallengethemselvestolooktoinnovativedatasetsandintegrationsthathave

notbeenpreviouslyleveraged.

Asanexample,toppharmaorganizationsareturningtheirattentiontopatientsupportprograms.Whilethereare

avarietyofdatatypesandsourcesthataddresspatient

needs,organizationsmustassesshowtobesttomeettheirpatientneeds.Atauniquepharmalevel,thismeansthat

youshouldconsiderthepatientneedsanddatacollectedforuniquepatientsegment(s).ThiscoulddiffergreatlyifyouareworkinginthehighlyprevalenttherapeuticareaofobesityversusararediseaselikeSickleCellDisease.

Furthermore,lifesciencesorganizationsareincreasinglyinvestinginintegratingdatatogaingreaterinsights

intopatients,providers,andotherstakeholders.ThisincludesintegratingthepurchaseofLRxdatawiththeirin-housepatientsupportprogram(PSP)data.Doing

soenablesaunique,longitudinallookatthepatient

journeytobetterunderstandtheirbackgrounds,

experiences,behaviors,drivers,andmore.However,doingsorequiresadedicationtopatientdataprivacy,whichbecomesmorechallengingasdataiscontinuallyintegrated,requiringgreaterdegreesoftokenization,

anonymization,andmonitoringforriskofre-identification(RRD).

Whileintegrationandinteroperabilitycanleadtogreateranddeeperinsights,theyaremeaninglesswithoutuser-friendlyreportingdashboards.Tobesuccessful,your

organizationandteammusthavetoolstofocusonthemostimpactfulKPIsandbusinessquestionsfocusedon

theirrole.Theymusttakethetimetofullyunderstandthepowerofintegrateddataandshareinsights

acrossteams.

6.Activateteamswithashiftincultureandmindset

Establishingtherightprocessesandtoolswillonlygetyousofar.Itiscriticalthatteamsaresupportedand

empoweredtodriveyourdatastrategy.Thisincludesaculturethatanswersbusinessquestionsanddevelopssolutionsthatdrivetowardsaction.Makesurethat

yourorganizationprioritizes“data-drivenculture”initseverydaylanguageandexpectations.Ensurethatbusinessquestionsandprioritiescanbetestedwithhypothesesandevidence.

Todothis,themessagehastocomefromthetopdown,

aswellasthebottomup.Ensureyourorganization’s

leadershipsubscribestothelevelofdata-drivenrigortheyexpectfromtheircolleagues.Andsupportthosecolleagueswithappropriatetrainingsondataliteracy,whichis

expectedtobecomeamainstreampriorityin2-5years.7

Finally,remember,establishinganenduringcultureisanongoingeffort!

“Perhapsthemostunderappreciatedpart

ofourjourneyhasbeentheimportanceofactivelyengagingourbusinesscolleaguesaspartofthejourney.Nowthattheybetterrecognizewhatwecando,andplantodo,wearebroughtinearlieron,asstrategicpartners.Histo

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論