版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省邵東一中振華實驗學校2025屆高考考前提分數(shù)學仿真卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,點E是正方體ABCD-A1B1C1D1的棱DD1的中點,點F,M分別在線段AC,BD1(不包含端點)上運動,則()A.在點F的運動過程中,存在EF//BC1B.在點M的運動過程中,不存在B1M⊥AEC.四面體EMAC的體積為定值D.四面體FA1C1B的體積不為定值2.已知命題,;命題若,則,下列命題為真命題的是()A. B. C. D.3.小明有3本作業(yè)本,小波有4本作業(yè)本,將這7本作業(yè)本混放在-起,小明從中任取兩本.則他取到的均是自己的作業(yè)本的概率為()A. B. C. D.4.設(shè)數(shù)列是等差數(shù)列,,.則這個數(shù)列的前7項和等于()A.12 B.21 C.24 D.365.過拋物線的焦點作直線交拋物線于兩點,若線段中點的橫坐標為3,且,則拋物線的方程是()A. B. C. D.6.為研究語文成績和英語成績之間是否具有線性相關(guān)關(guān)系,統(tǒng)計兩科成績得到如圖所示的散點圖(兩坐標軸單位長度相同),用回歸直線近似地刻畫其相關(guān)關(guān)系,根據(jù)圖形,以下結(jié)論最有可能成立的是()A.線性相關(guān)關(guān)系較強,b的值為1.25B.線性相關(guān)關(guān)系較強,b的值為0.83C.線性相關(guān)關(guān)系較強,b的值為-0.87D.線性相關(guān)關(guān)系太弱,無研究價值7.若為虛數(shù)單位,網(wǎng)格紙上小正方形的邊長為1,圖中復平面內(nèi)點表示復數(shù),則表示復數(shù)的點是()A.E B.F C.G D.H8.已知是雙曲線的兩個焦點,過點且垂直于軸的直線與相交于兩點,若,則的內(nèi)切圓半徑為()A. B. C. D.9.2019年某校迎國慶70周年歌詠比賽中,甲乙兩個合唱隊每場比賽得分的莖葉圖如圖所示(以十位數(shù)字為莖,個位數(shù)字為葉).若甲隊得分的中位數(shù)是86,乙隊得分的平均數(shù)是88,則()A.170 B.10 C.172 D.1210.若函數(shù)恰有3個零點,則實數(shù)的取值范圍是()A. B. C. D.11.某四棱錐的三視圖如圖所示,則該四棱錐的表面積為()A.8 B. C. D.12.某工廠一年中各月份的收入、支出情況的統(tǒng)計如圖所示,下列說法中錯誤的是().A.收入最高值與收入最低值的比是B.結(jié)余最高的月份是月份C.與月份的收入的變化率與至月份的收入的變化率相同D.前個月的平均收入為萬元二、填空題:本題共4小題,每小題5分,共20分。13.若隨機變量的分布列如表所示,則______,______.-10114.已知變量x,y滿足約束條件x-y≤0x+2y≤34x-y≥-6,則15.已知點是拋物線上動點,是拋物線的焦點,點的坐標為,則的最小值為______________.16.如圖,四面體的一條棱長為,其余棱長均為1,記四面體的體積為,則函數(shù)的單調(diào)增區(qū)間是____;最大值為____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某調(diào)查機構(gòu)對某校學生做了一個是否同意生“二孩”抽樣調(diào)查,該調(diào)查機構(gòu)從該校隨機抽查了100名不同性別的學生,調(diào)查統(tǒng)計他們是同意父母生“二孩”還是反對父母生“二孩”,現(xiàn)已得知100人中同意父母生“二孩”占60%,統(tǒng)計情況如下表:同意不同意合計男生a5女生40d合計100(1)求a,d的值,根據(jù)以上數(shù)據(jù),能否有97.5%的把握認為是否同意父母生“二孩”與性別有關(guān)?請說明理由;(2)將上述調(diào)查所得的頻率視為概率,現(xiàn)在從所有學生中,采用隨機抽樣的方法抽取4位學生進行長期跟蹤調(diào)查,記被抽取的4位學生中持“同意”態(tài)度的人數(shù)為X,求X的分布列及數(shù)學期望.附:0.150.1000.0500.0250.0102.0722.7063.8415.0246.63518.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)最小值為,且,求的最小值.19.(12分)如圖,已知橢圓的右焦點為,,為橢圓上的兩個動點,周長的最大值為8.(Ⅰ)求橢圓的標準方程;(Ⅱ)直線經(jīng)過,交橢圓于點,,直線與直線的傾斜角互補,且交橢圓于點,,,求證:直線與直線的交點在定直線上.20.(12分)已知數(shù)列的前項和和通項滿足.(1)求數(shù)列的通項公式;(2)已知數(shù)列中,,,求數(shù)列的前項和.21.(12分)設(shè)數(shù)列是等比數(shù)列,,已知,(1)求數(shù)列的首項和公比;(2)求數(shù)列的通項公式.22.(10分)2019年是五四運動100周年.五四運動以來的100年,是中國青年一代又一代接續(xù)奮斗、凱歌前行的100年,是中口青年用青春之我創(chuàng)造青春之中國、青春之民族的100年.為繼承和發(fā)揚五四精神在青年節(jié)到來之際,學校組織“五四運動100周年”知識競賽,競賽的一個環(huán)節(jié)由10道題目組成,其中6道A類題、4道B類題,參賽者需從10道題目中隨機抽取3道作答,現(xiàn)有甲同學參加該環(huán)節(jié)的比賽.(1)求甲同學至少抽到2道B類題的概率;(2)若甲同學答對每道A類題的概率都是,答對每道B類題的概率都是,且各題答對與否相互獨立.現(xiàn)已知甲同學恰好抽中2道A類題和1道B類題,用X表示甲同學答對題目的個數(shù),求隨機變量X的分布列和數(shù)學期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
采用逐一驗證法,根據(jù)線線、線面之間的關(guān)系以及四面體的體積公式,可得結(jié)果.【詳解】A錯誤由平面,//而與平面相交,故可知與平面相交,所以不存在EF//BC1B錯誤,如圖,作由又平面,所以平面又平面,所以由//,所以,平面所以平面,又平面所以,所以存在C正確四面體EMAC的體積為其中為點到平面的距離,由//,平面,平面所以//平面,則點到平面的距離即點到平面的距離,所以為定值,故四面體EMAC的體積為定值錯誤由//,平面,平面所以//平面,則點到平面的距離即為點到平面的距離,所以為定值所以四面體FA1C1B的體積為定值故選:C【點睛】本題考查線面、線線之間的關(guān)系,考驗分析能力以及邏輯推理能力,熟練線面垂直與平行的判定定理以及性質(zhì)定理,中檔題.2、B【解析】解:命題p:?x>0,ln(x+1)>0,則命題p為真命題,則¬p為假命題;取a=﹣1,b=﹣2,a>b,但a2<b2,則命題q是假命題,則¬q是真命題.∴p∧q是假命題,p∧¬q是真命題,¬p∧q是假命題,¬p∧¬q是假命題.故選B.3、A【解析】
利用計算即可,其中表示事件A所包含的基本事件個數(shù),為基本事件總數(shù).【詳解】從7本作業(yè)本中任取兩本共有種不同的結(jié)果,其中,小明取到的均是自己的作業(yè)本有種不同結(jié)果,由古典概型的概率計算公式,小明取到的均是自己的作業(yè)本的概率為.故選:A.【點睛】本題考查古典概型的概率計算問題,考查學生的基本運算能力,是一道基礎(chǔ)題.4、B【解析】
根據(jù)等差數(shù)列的性質(zhì)可得,由等差數(shù)列求和公式可得結(jié)果.【詳解】因為數(shù)列是等差數(shù)列,,所以,即,又,所以,,故故選:B【點睛】本題主要考查了等差數(shù)列的通項公式,性質(zhì),等差數(shù)列的和,屬于中檔題.5、B【解析】
利用拋物線的定義可得,,把線段AB中點的橫坐標為3,代入可得p值,然后可得出拋物線的方程.【詳解】設(shè)拋物線的焦點為F,設(shè)點,由拋物線的定義可知,線段AB中點的橫坐標為3,又,,可得,所以拋物線方程為.故選:B.【點睛】本題考查拋物線的定義、標準方程,以及簡單性質(zhì)的應(yīng)用,利用拋物線的定義是解題的關(guān)鍵.6、B【解析】
根據(jù)散點圖呈現(xiàn)的特點可以看出,二者具有相關(guān)關(guān)系,且斜率小于1.【詳解】散點圖里變量的對應(yīng)點分布在一條直線附近,且比較密集,故可判斷語文成績和英語成績之間具有較強的線性相關(guān)關(guān)系,且直線斜率小于1,故選B.【點睛】本題主要考查散點圖的理解,側(cè)重考查讀圖識圖能力和邏輯推理的核心素養(yǎng).7、C【解析】
由于在復平面內(nèi)點的坐標為,所以,然后將代入化簡后可找到其對應(yīng)的點.【詳解】由,所以,對應(yīng)點.故選:C【點睛】此題考查的是復數(shù)與復平面內(nèi)點的對就關(guān)系,復數(shù)的運算,屬于基礎(chǔ)題.8、B【解析】
首先由求得雙曲線的方程,進而求得三角形的面積,再由三角形的面積等于周長乘以內(nèi)切圓的半徑即可求解.【詳解】由題意將代入雙曲線的方程,得則,由,得的周長為,設(shè)的內(nèi)切圓的半徑為,則,故選:B【點睛】本題考查雙曲線的定義、方程和性質(zhì),考查三角形的內(nèi)心的概念,考查了轉(zhuǎn)化的思想,屬于中檔題.9、D【解析】
中位數(shù)指一串數(shù)據(jù)按從?。ù螅┑酱螅ㄐ。┡帕泻螅幵谧钪虚g的那個數(shù),平均數(shù)指一串數(shù)據(jù)的算術(shù)平均數(shù).【詳解】由莖葉圖知,甲的中位數(shù)為,故;乙的平均數(shù)為,解得,所以.故選:D.【點睛】本題考查莖葉圖的應(yīng)用,涉及到中位數(shù)、平均數(shù)的知識,是一道容易題.10、B【解析】
求導函數(shù),求出函數(shù)的極值,利用函數(shù)恰有三個零點,即可求實數(shù)的取值范圍.【詳解】函數(shù)的導數(shù)為,令,則或,上單調(diào)遞減,上單調(diào)遞增,所以0或是函數(shù)y的極值點,函數(shù)的極值為:,函數(shù)恰有三個零點,則實數(shù)的取值范圍是:.故選B.【點睛】該題考查的是有關(guān)結(jié)合函數(shù)零點個數(shù),來確定參數(shù)的取值范圍的問題,在解題的過程中,注意應(yīng)用導數(shù)研究函數(shù)圖象的走向,利用數(shù)形結(jié)合思想,轉(zhuǎn)化為函數(shù)圖象間交點個數(shù)的問題,難度不大.11、D【解析】
根據(jù)三視圖還原幾何體為四棱錐,即可求出幾何體的表面積.【詳解】由三視圖知幾何體是四棱錐,如圖,且四棱錐的一條側(cè)棱與底面垂直,四棱錐的底面是正方形,邊長為2,棱錐的高為2,所以,故選:【點睛】本題主要考查了由三視圖還原幾何體,棱錐表面積的計算,考查了學生的運算能力,屬于中檔題.12、D【解析】由圖可知,收入最高值為萬元,收入最低值為萬元,其比是,故項正確;結(jié)余最高為月份,為,故項正確;至月份的收入的變化率為至月份的收入的變化率相同,故項正確;前個月的平均收入為萬元,故項錯誤.綜上,故選.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
首先求得a的值,然后利用均值的性質(zhì)計算均值,最后求得的值,由方差的性質(zhì)計算的值即可.【詳解】由題意可知,解得(舍去)或.則,則,由方差的計算性質(zhì)得.【點睛】本題主要考查分布列的性質(zhì),均值的計算公式,方差的計算公式,方差的性質(zhì)等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.14、-5【解析】
畫出x,y滿足的可行域,當目標函數(shù)z=x-2y經(jīng)過點A時,z最小,求解即可?!驹斀狻慨嫵鰔,y滿足的可行域,由x+2y=34x-y=-6解得A-1,2,當目標函數(shù)z=x-2y經(jīng)過點A【點睛】本題考查的是線性規(guī)劃問題,解決線性規(guī)劃問題的實質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合思想。需要注意的是:一,準確無誤地作出可行域;二,畫目標函數(shù)所對應(yīng)的直線時,要注意讓其斜率與約束條件中的直線的斜率進行比較,避免出錯;三,一般情況下,目標函數(shù)的最大值或最小值會在可行域的端點或邊界上取得。15、【解析】
過點作垂直于準線,為垂足,則由拋物線的定義可得,則,為銳角.故當和拋物線相切時,的值最小.再利用直線的斜率公式、導數(shù)的幾何意義求得切點的坐標,從而求得的最小值.【詳解】解:由題意可得,拋物線的焦點,準線方程為,過點作垂直于準線,為垂足,則由拋物線的定義可得,則,為銳角.故當最小時,的值最小.設(shè)切點,由的導數(shù)為,則的斜率為,求得,可得,,,.故答案為:.【點睛】本題考查拋物線的定義,性質(zhì)的簡單應(yīng)用,直線的斜率公式,導數(shù)的幾何意義,屬于中檔題.16、(或?qū)懗?【解析】試題分析:設(shè),取中點則,因此,所以,因為在單調(diào)遞增,最大值為所以單調(diào)增區(qū)間是,最大值為考點:函數(shù)最值,函數(shù)單調(diào)區(qū)間三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),有97.5%的把握認為是否同意父母生“二孩”與“性別”有關(guān);(2)詳見解析.【解析】
(1)根據(jù)表格及同意父母生“二孩”占60%可求出,,根據(jù)公式計算結(jié)果即可確定有97.5%的把握認為是否同意父母生“二孩”與“性別”有關(guān)(2)由題意可知X服從二項分布,利用公式計算概率及期望即可.【詳解】(1)因為100人中同意父母生“二孩”占60%,所以,文(2)由列聯(lián)表可得而所以有97.5%的把握認為是否同意父母生“二孩”與“性別”有關(guān)(2)①由題知持“同意”態(tài)度的學生的頻率為,即從學生中任意抽取到一名持“同意”態(tài)度的學生的概率為.由于總體容量很大,故X服從二項分布,即從而X的分布列為X01234X的數(shù)學期望為【點睛】本題主要考查了相關(guān)性檢驗、二項分布,屬于中檔題.18、(1)(2)【解析】
(1)利用零點分段法,求得不等式的解集.(2)先求得,即,再根據(jù)“的代換”的方法,結(jié)合基本不等式,求得的最小值.【詳解】(1)當時,,即,無解;當時,,即,得;當時,,即,得.故所求不等式的解集為.(2)因為,所以,則,.當且僅當即時取等號.故的最小值為.【點睛】本小題主要考查零點分段法解絕對值不等式,考查利用基本不等式求最值,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.19、(Ⅰ);(Ⅱ)詳見解析.【解析】
(Ⅰ)由橢圓的定義可得,周長取最大值時,線段過點,可求出,從而求出橢圓的標準方程;(Ⅱ)設(shè)直線,直線,,,,.把直線與直線的方程分別代入橢圓的方程,利用韋達定理和弦長公式求出和,根據(jù)求出的值.最后直線與直線的方程聯(lián)立,求兩直線的交點即得結(jié)論.【詳解】(Ⅰ)設(shè)的周長為,則,當且僅當線段過點時“”成立.,,又,,橢圓的標準方程為.(Ⅱ)若直線的斜率不存在,則直線的斜率也不存在,這與直線與直線相交于點矛盾,所以直線的斜率存在.設(shè),,,,,.將直線的方程代入橢圓方程得:.,,.同理,.由得,此時.直線,聯(lián)立直線與直線的方程得,即點在定直線.【點睛】本題考查橢圓的標準方程,考查直線與橢圓的位置關(guān)系,考查學生的邏輯推理能力和運算能力,屬于難題.20、(1);(2)【解析】
(1)當時,利用可得,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東食品藥品職業(yè)學院《隧道施工技術(shù)B》2023-2024學年第一學期期末試卷
- 廣東石油化工學院《nux運維實踐》2023-2024學年第一學期期末試卷
- 廣東培正學院《大數(shù)據(jù)行業(yè)規(guī)范指導》2023-2024學年第一學期期末試卷
- 廣東農(nóng)工商職業(yè)技術(shù)學院《時尚媒體與公關(guān)》2023-2024學年第一學期期末試卷
- 廣東南方職業(yè)學院《環(huán)境工程技術(shù)經(jīng)濟》2023-2024學年第一學期期末試卷
- 廣東茂名健康職業(yè)學院《照明設(shè)計基礎(chǔ)》2023-2024學年第一學期期末試卷
- 七年級下冊英語人教版單詞表
- 【走向高考2022】人教版高三地理一輪復習-區(qū)域地理-第2章-第2講課時作業(yè)
- 【名師一號】2020-2021學年高中英語北師大版必修4-雙基限時練7
- 【與名師對話】2022高考地理課標版總復習質(zhì)量檢測3-
- 食堂安全用電知識培訓課件
- 湖北省黃岡市黃州區(qū)啟黃中學2023年數(shù)學九年級第一學期期末調(diào)研模擬試題含解析
- 親子鑒定報告樣本
- 智能制造職業(yè)規(guī)劃
- 幼兒戶外游戲活動論文
- 歐姆定律完整版
- DFMEA-汽車空調(diào)-系統(tǒng)
- 高考志愿填報志愿流程
- 外交學院招聘考試題庫2024
- 2024年度醫(yī)院影像介入科護理工作計劃
- 安徽省黃山市2023-2024學年高二上學期期末質(zhì)量檢測英語試題【含答案解析】
評論
0/150
提交評論