新高考數(shù)學(xué)一輪復(fù)習(xí) 專項分層精練第11課 函數(shù)與方程(解析版)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 專項分層精練第11課 函數(shù)與方程(解析版)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 專項分層精練第11課 函數(shù)與方程(解析版)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 專項分層精練第11課 函數(shù)與方程(解析版)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 專項分層精練第11課 函數(shù)與方程(解析版)_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第11課函數(shù)與方程(分層專項精練)【一層練基礎(chǔ)】一、單選題1.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點個數(shù)為(

).A.1 B.2 C.3 D.4【答案】C【分析】通過解法方程SKIPIF1<0來求得SKIPIF1<0的零點個數(shù).【詳解】由SKIPIF1<0可得SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,或SKIPIF1<0(舍去),當(dāng)SKIPIF1<0時,SKIPIF1<0或SKIPIF1<0.故SKIPIF1<0是SKIPIF1<0的零點,SKIPIF1<0是SKIPIF1<0的零點,SKIPIF1<0是SKIPIF1<0的零點.綜上所述,SKIPIF1<0共有SKIPIF1<0個零點.故選:C2.(2012秋·上?!じ呷y(tǒng)考期中)已知SKIPIF1<0是函數(shù)SKIPIF1<0的零點,若SKIPIF1<0,則SKIPIF1<0的值滿足A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0的符號不確定【答案】B【分析】數(shù)形結(jié)合分析即可【詳解】不妨設(shè)SKIPIF1<0,則SKIPIF1<0,作出SKIPIF1<0圖像如下:則可以得到SKIPIF1<0點的橫坐標(biāo)即為SKIPIF1<0的零點SKIPIF1<0,此時SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0故選:B3.(2023春·廣東深圳·高一??茧A段練習(xí))已知函數(shù)SKIPIF1<0,若SKIPIF1<0有4個零點,則實數(shù)a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】在同一坐標(biāo)系中作出SKIPIF1<0的圖象,根據(jù)SKIPIF1<0有4個零點求解.【詳解】解:令SKIPIF1<0,得SKIPIF1<0,在同一坐標(biāo)系中作出SKIPIF1<0的圖象,如圖所示:由圖象知:若SKIPIF1<0有4個零點,則實數(shù)a的取值范圍是SKIPIF1<0,故選:A二、多選題4.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0(即SKIPIF1<0,SKIPIF1<0)則(

)A.當(dāng)SKIPIF1<0時,SKIPIF1<0是偶函數(shù) B.SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù)C.設(shè)SKIPIF1<0最小值為SKIPIF1<0,則SKIPIF1<0 D.方程SKIPIF1<0可能有2個解【答案】ABD【分析】結(jié)合奇偶函數(shù)的定義和二次函數(shù)的性質(zhì)逐一判斷選項即可.【詳解】SKIPIF1<0:當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0是偶函數(shù),故正確;SKIPIF1<0:當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0的對稱軸為SKIPIF1<0,開口向上,此時SKIPIF1<0在SKIPIF1<0上是增函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0的對稱軸為SKIPIF1<0,開口向上,此時SKIPIF1<0在SKIPIF1<0上是增函數(shù),綜上,SKIPIF1<0在SKIPIF1<0上是增函數(shù),故SKIPIF1<0正確;SKIPIF1<0:當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,因為不能確定SKIPIF1<0的大小,所以最小值SKIPIF1<0無法判斷,故SKIPIF1<0錯誤;SKIPIF1<0:令SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0有2個解,故SKIPIF1<0正確.故選:ABD5.(2022秋·湖北省直轄縣級單位·高一校考階段練習(xí))若函數(shù)SKIPIF1<0的圖像在R上連續(xù)不斷,且滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則下列說法錯誤的是(

)A.SKIPIF1<0在區(qū)間(0,1)上一定有零點,在區(qū)間(1,2)上一定沒有零點B.SKIPIF1<0在區(qū)間(0,1)上一定沒有零點,在區(qū)間(1,2)上一定有零點C.SKIPIF1<0在區(qū)間(0,1)上一定有零點,在區(qū)間(1,2)上可能有零點D.SKIPIF1<0在區(qū)間(0,1)上可能有零點,在區(qū)間(1,2)上一定有零點【答案】ABD【解析】根據(jù)SKIPIF1<0的圖像在SKIPIF1<0上連續(xù)不斷,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,結(jié)合零點存在定理,判斷出在區(qū)間SKIPIF1<0和SKIPIF1<0上零點存在的情況,得到答案.【詳解】由題知SKIPIF1<0,所以根據(jù)函數(shù)零點存在定理可得SKIPIF1<0在區(qū)間SKIPIF1<0上一定有零點,又SKIPIF1<0,無法判斷SKIPIF1<0在區(qū)間SKIPIF1<0上是否有零點,在區(qū)間(1,2)上可能有零點.故選:SKIPIF1<0.三、填空題6.(2019·浙江·高三專題練習(xí))已知函數(shù)SKIPIF1<0有3個零點,則實數(shù)SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【分析】將函數(shù)的零點轉(zhuǎn)化為SKIPIF1<0有一個零點,SKIPIF1<0有兩個零點,結(jié)合零點分布分析運算.【詳解】根據(jù)題意得:SKIPIF1<0有一個零點,SKIPIF1<0有兩個零點若SKIPIF1<0有一個零點,則SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0有兩個零點則可得SKIPIF1<0,得SKIPIF1<0故答案為:SKIPIF1<0.【二層練綜合】一、單選題1.(2022·全國·高三專題練習(xí))求下列函數(shù)的零點,可以采用二分法的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】SKIPIF1<0不是單調(diào)函數(shù),SKIPIF1<0,不能用二分法求零點;SKIPIF1<0是單調(diào)函數(shù),SKIPIF1<0,能用二分法求零點;SKIPIF1<0不是單調(diào)函數(shù),SKIPIF1<0,不能用二分法求零點;SKIPIF1<0不是單調(diào)函數(shù),SKIPIF1<0,不能用二分法求零點.故選:B2.(2023秋·高一課時練習(xí))已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點個數(shù)是(

)A.2 B.3 C.4 D.5【答案】D【分析】令SKIPIF1<0,根據(jù)SKIPIF1<0分別求出函數(shù)SKIPIF1<0的零點或零點所在區(qū)間,再作出函數(shù)SKIPIF1<0的圖象,根據(jù)數(shù)形結(jié)合即可求出函數(shù)SKIPIF1<0的零點個數(shù);【詳解】令SKIPIF1<0.①當(dāng)SKIPIF1<0時,SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,由于SKIPIF1<0,由零點存在定理可知,存在SKIPIF1<0,使得SKIPIF1<0;②當(dāng)SKIPIF1<0時,SKIPIF1<0,由SKIPIF1<0,解得SKIPIF1<0.作出函數(shù)SKIPIF1<0,直線SKIPIF1<0的圖象如下圖所示:

由圖象可知,直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有兩個交點;直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有兩個交點;直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有且只有一個交點.綜上所述,函數(shù)SKIPIF1<0的零點個數(shù)為5.故選:D.3.(2023·全國·高二專題練習(xí))函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)有極值,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由可導(dǎo)函數(shù)在開區(qū)間內(nèi)有極值的充要條件即可作答.【詳解】由SKIPIF1<0得,SKIPIF1<0,因函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)有極值,則SKIPIF1<0時,SKIPIF1<0有解,即在SKIPIF1<0時,函數(shù)SKIPIF1<0與直線y=a有公共點,而SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,則SKIPIF1<0,顯然在SKIPIF1<0零點左右兩側(cè)SKIPIF1<0異號,所以實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:C【點睛】結(jié)論點睛:可導(dǎo)函數(shù)y=f(x)在點x0處取得極值的充要條件是f′(x0)=0,且在x0左側(cè)與右側(cè)f′(x)的符號不同.二、多選題4.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0若關(guān)于x的方程SKIPIF1<0有5個不同的實根,則實數(shù)a的取值可以為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BCD【分析】換元,將原方程根的個數(shù)問題轉(zhuǎn)化二次函數(shù)零點的分布問題,結(jié)合圖象可解.【詳解】令SKIPIF1<0,記SKIPIF1<0的兩個零點為SKIPIF1<0,則由SKIPIF1<0的圖象可知:方程SKIPIF1<0有5個不同的實根SKIPIF1<0SKIPIF1<0與SKIPIF1<0的圖象共有5個交點SKIPIF1<0,且SKIPIF1<0(不妨設(shè)SKIPIF1<0).則SKIPIF1<0解得SKIPIF1<0.故選:BCD5.(2023·廣東廣州·廣州市培正中學(xué)??寄M預(yù)測)已知函數(shù)SKIPIF1<0,若關(guān)于x的方程SKIPIF1<0恰有兩個不同解SKIPIF1<0,則SKIPIF1<0的取值可能是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.0 D.2【答案】BC【分析】利用函數(shù)的單調(diào)性以及已知條件得到SKIPIF1<0,代入SKIPIF1<0,令SKIPIF1<0,求導(dǎo),利用導(dǎo)函數(shù)的單調(diào)性分析原函數(shù)的單調(diào)性,即可求出取值范圍.【詳解】因為SKIPIF1<0的兩根為SKIPIF1<0,所以SKIPIF1<0,從而SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上恒成立,從而SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0的取值范圍是SKIPIF1<0,故選:BC.【點睛】關(guān)鍵點睛:本題考查利用導(dǎo)數(shù)解決函數(shù)的范圍問題.構(gòu)造函數(shù)SKIPIF1<0,利用導(dǎo)數(shù)求取值范圍是解決本題的關(guān)鍵.三、填空題6.(2023·全國·高一專題練習(xí))若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則x、y、z由小到大的順序是.【答案】SKIPIF1<0【分析】把給定的三個等式作等價變形,比較函數(shù)SKIPIF1<0的圖象與曲線SKIPIF1<0交點的橫坐標(biāo)大小作答.【詳解】依題意,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,因此,SKIPIF1<0成立的x值是函數(shù)SKIPIF1<0與SKIPIF1<0的圖象交點的橫坐標(biāo)SKIPIF1<0,SKIPIF1<0成立的y值是函數(shù)SKIPIF1<0與SKIPIF1<0的圖象交點的橫坐標(biāo)SKIPIF1<0,SKIPIF1<0成立的z值是函數(shù)SKIPIF1<0與SKIPIF1<0的圖象交點的橫坐標(biāo)SKIPIF1<0,在同一坐標(biāo)系內(nèi)作出函數(shù)SKIPIF1<0,SKIPIF1<0的圖象,如圖,觀察圖象得:SKIPIF1<0,即SKIPIF1<0,所以x、y、z由小到大的順序是SKIPIF1<0.故答案為:SKIPIF1<0【點睛】思路點睛:涉及某些由指數(shù)式、對數(shù)式給出的幾個數(shù)大小比較,可以把這幾個數(shù)視為對應(yīng)的指數(shù)、對數(shù)函數(shù)與另外某個函數(shù)圖象交點橫坐標(biāo),利用圖象的直觀性質(zhì)解決.【三層練能力】一、單選題1.(2023春·陜西西安·高二西安市第三中學(xué)校考階段練習(xí))已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0恰有5個零點SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】將SKIPIF1<0看成整體解出SKIPIF1<0或SKIPIF1<0,作出SKIPIF1<0的大致圖象,將式子化為SKIPIF1<0,然后轉(zhuǎn)化為SKIPIF1<0的范圍進(jìn)行分類討論即可判斷.【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,此時,SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0,可得SKIPIF1<0在SKIPIF1<0上單調(diào)遞減且恒負(fù),在SKIPIF1<0上單調(diào)遞增且恒負(fù),且SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,作出SKIPIF1<0的大致圖象如圖所示,函數(shù)SKIPIF1<0恰有5個零點SKIPIF1<0,等價于方程SKIPIF1<0有5個不同的實數(shù)根,解得:SKIPIF1<0或SKIPIF1<0,SKIPIF1<0,該方程有5個根,且SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,綜上:SKIPIF1<0的取值范圍是:SKIPIF1<0.故選:B.【點睛】關(guān)鍵點點睛:本題的關(guān)鍵點是對SKIPIF1<0的理解,將SKIPIF1<0看成一個SKIPIF1<0,解出其值,然后通過圖象分析,轉(zhuǎn)化為直線SKIPIF1<0與圖象的交點情況.2.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0在SKIPIF1<0上有唯一零點,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.2 B.3 C.4 D.5【答案】B【分析】對函數(shù)SKIPIF1<0求導(dǎo)得SKIPIF1<0,再對k分類討論以確定函數(shù)的單調(diào)性,函數(shù)有唯一零點的條件,轉(zhuǎn)化為函數(shù)最值即可作答.【詳解】因SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0時,恒有SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上無零點,SKIPIF1<0時,SKIPIF1<0,而SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,從而SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,因函數(shù)SKIPIF1<0在SKIPIF1<0上有唯一零點,則SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞減,而SKIPIF1<0,于是得SKIPIF1<0的零點SKIPIF1<0,所以SKIPIF1<0.故選:B二、多選題3.(2023·全國·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0分別是函數(shù)SKIPIF1<0和SKIPIF1<0的零點,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0D.SKIPIF1<0【答案】BCD【分析】利用函數(shù)與方程思想,得到兩根滿足的方程關(guān)系,然后根據(jù)結(jié)構(gòu)構(gòu)造函數(shù)SKIPIF1<0,求導(dǎo),研究單調(diào)性,得到SKIPIF1<0及SKIPIF1<0,結(jié)合指對互化即可判斷選項A、B、C,最后再通過對勾函數(shù)單調(diào)性求解范圍即可判斷選項D.【詳解】令SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,記函數(shù)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故A錯誤;又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故B正確;所以SKIPIF1<0,故C正確;又SKIPIF1<0,所以SKIPIF1<0,結(jié)合SKIPIF1<0,得SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,因為SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0,故D正確;故選:BCD【點睛】關(guān)鍵點點睛:本題考查函數(shù)的零點問題,解題方法是把函數(shù)的零點轉(zhuǎn)化為方程的根,通過結(jié)構(gòu)構(gòu)造函數(shù),利用函數(shù)單調(diào)性及指對互化找到根的關(guān)系得出結(jié)論.三、填空題4.(2023春·安徽滁州·高二??计谀┮阎瘮?shù)SKIPIF1<0,若關(guān)于x的方程SKIPIF1<0恰有兩個不相等的實數(shù)根SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【分析】根據(jù)給定分段函數(shù),求出函數(shù)SKIPIF1<0的解析式,確定給定方程有兩個不等實根的a的取值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論