版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第01課函數(shù)的概念及其表示(分層專項(xiàng)精練)【一層練基礎(chǔ)】一、單選題1.(2023·山東濰坊·統(tǒng)考一模)存在函數(shù)SKIPIF1<0滿足:對任意SKIPIF1<0都有(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2005·江西·高考真題)函數(shù)SKIPIF1<0的定義域?yàn)椋?/p>
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0滿足SKIPIF1<0,則(
)A.SKIPIF1<0的最小值為2 B.SKIPIF1<0C.SKIPIF1<0的最大值為2 D.SKIPIF1<04.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0,若存在SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0是一次函數(shù),且SKIPIF1<0恒成立,則SKIPIF1<0A.1 B.3 C.5 D.76.(2023·高一課時(shí)練習(xí))已知函數(shù)SKIPIF1<0在定義域SKIPIF1<0上單調(diào),且均有SKIPIF1<0,則SKIPIF1<0的值為(
)A.3 B.1 C.0 D.SKIPIF1<07.(2022秋·廣西防城港·高一防城港市高級(jí)中學(xué)??茧A段練習(xí))下列各組函數(shù)中,表示同一函數(shù)的是(
)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<08.(2007·安徽·高考真題)如圖中的圖象所表示的函數(shù)的解析式為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<09.(2021·陜西咸陽·??寄M預(yù)測)對于函數(shù)SKIPIF1<0,部分x與y的對應(yīng)關(guān)系如下表:x…123456789…y…375961824…數(shù)列SKIPIF1<0滿足:SKIPIF1<0,且對于任意SKIPIF1<0,點(diǎn)SKIPIF1<0都在函數(shù)SKIPIF1<0的圖象上,則SKIPIF1<0(
)A.7576 B.7575 C.7569 D.756410.(2012·江西·高考真題)設(shè)函數(shù)f(x)=SKIPIF1<0則f(f(3))=()A.SKIPIF1<0 B.3 C.SKIPIF1<0 D.SKIPIF1<011.(2019·福建泉州·福建省永春第一中學(xué)校考模擬預(yù)測)已知函數(shù)SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0為實(shí)數(shù),若存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0成立,則SKIPIF1<0的取值范圍為A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<012.(2023·遼寧沈陽·統(tǒng)考三模)已知函數(shù)SKIPIF1<0,若SKIPIF1<0的值域是SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<013.(2022秋·陜西西安·高一西安市鐵一中學(xué)??计谥校┮阎瘮?shù)SKIPIF1<0是(-∞,+∞)上的減函數(shù),則a的取值范圍是(
)A.(0,3) B.(0,3] C.(0,2) D.(0,2]14.(2022秋·甘肅蘭州·高一蘭州市第二中學(xué)??计谀┮阎猄KIPIF1<0的值域?yàn)镾KIPIF1<0,那么SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題15.(2023·高二課時(shí)練習(xí))已知函數(shù)SKIPIF1<0,則(
)A.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列 B.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列C.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列 D.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列16.(2022·高一單元測試)下列說法不正確的是(
)A.函數(shù)SKIPIF1<0在定義域內(nèi)是減函數(shù)B.若SKIPIF1<0是奇函數(shù),則一定有SKIPIF1<0C.已知函數(shù)SKIPIF1<0在SKIPIF1<0上是增函數(shù),則實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0D.若SKIPIF1<0的定義域?yàn)镾KIPIF1<0,則SKIPIF1<0的定義域?yàn)镾KIPIF1<017.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,則下列敘述正確的是(
)A.SKIPIF1<0的值域?yàn)镾KIPIF1<0 B.SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增C.SKIPIF1<0 D.若SKIPIF1<0,則SKIPIF1<0的最小值為-318.(2023·海南·校聯(lián)考模擬預(yù)測)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0不恒等于零,同時(shí)滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,那么當(dāng)SKIPIF1<0時(shí),下列結(jié)論不正確的為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<019.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,則()A.f(g(1))=11 B.g(f(1))=35C.f(g(x))=3·2x+3x+2 D.SKIPIF1<020.(2022秋·云南曲靖·高三曲靖一中??茧A段練習(xí))函數(shù)SKIPIF1<0分別是定義在SKIPIF1<0上的奇函數(shù)和偶函數(shù),且SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<021.(2021秋·全國·高一期中)已知函數(shù)SKIPIF1<0,則有()A.存在SKIPIF1<0,使得SKIPIF1<0B.存在SKIPIF1<0,使得SKIPIF1<0C.函數(shù)SKIPIF1<0與SKIPIF1<0的單調(diào)區(qū)間和單調(diào)性相同D.若SKIPIF1<0且SKIPIF1<0,則SKIPIF1<022.(2021秋·湖北荊門·高一荊門市龍泉中學(xué)校考階段練習(xí))已知函數(shù)SKIPIF1<0,若SKIPIF1<0的最小值為SKIPIF1<0,則實(shí)數(shù)a的值可以是(
)A.1 B.2 C.3 D.4三、填空題23.(2018·山西·校聯(lián)考一模)設(shè)SKIPIF1<0表示不超過SKIPIF1<0的最大整數(shù),如SKIPIF1<0,SKIPIF1<0,則方程SKIPIF1<0的解集為.24.(2022·安徽滁州·??寄M預(yù)測)已知函數(shù)SKIPIF1<0,則SKIPIF1<0.25.(2023·山東棗莊·統(tǒng)考模擬預(yù)測)已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的減函數(shù),且SKIPIF1<0,則SKIPIF1<0的取值范圍是.26.(2023·全國·高二專題練習(xí))寫出一個(gè)同時(shí)具備下列性質(zhì)①②③的函數(shù)SKIPIF1<0.①定義城為SKIPIF1<0,②導(dǎo)函數(shù)SKIPIF1<0;③值域?yàn)镾KIPIF1<027.(2022·高二課時(shí)練習(xí))已知函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,則SKIPIF1<0的定義域可以是.(寫出一個(gè)符合條件的即可)28.(2021·全國·高三專題練習(xí))設(shè)函數(shù)SKIPIF1<0,若SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的值為.29.(2022·全國·高三專題練習(xí))函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,圖象如圖1所示,函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,圖象如圖2所示.若集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0中有個(gè)元素.30.(2022秋·高一單元測試)已知函數(shù)SKIPIF1<0,則不等式SKIPIF1<0的解集為.31.(2022·全國·高三專題練習(xí))若a>0且a≠1,且函數(shù)SKIPIF1<0在R上單調(diào)遞增,那么a的取值范圍是.【二層練綜合】一、單選題1.(2013·陜西·高考真題)設(shè)[x]表示不大于x的最大整數(shù),則對任意實(shí)數(shù)x,y,有A.[-x]=-[x] B.[2x]=2[x]C.[x+y]≤[x]+[y] D.[x-y]≤[x]-[y]2.(2022秋·重慶沙坪壩·高三重慶市鳳鳴山中學(xué)??计谥校┮阎x域?yàn)镾KIPIF1<0的偶函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.33.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,其中a,b,c為常數(shù),若SKIPIF1<0,則c=(
)A.-1 B.0 C.1 D.24.(2022·四川綿陽·鹽亭中學(xué)??寄M預(yù)測)已知函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,則SKIPIF1<0的定義域是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2008·江西·高考真題)若函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,則函數(shù)SKIPIF1<0的定義域是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2018·浙江杭州·杭州高級(jí)中學(xué)??寄M預(yù)測)已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,則函數(shù)SKIPIF1<0的定義域是A.SKIPIF1<0 B.SKIPIF1<0C.R D.SKIPIF1<07.(2022·全國·高一專題練習(xí))已知函數(shù)SKIPIF1<0的定義域與值域均為SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.18.(2020秋·遼寧沈陽·高一東北育才學(xué)校??茧A段練習(xí))已知函數(shù)SKIPIF1<0則函數(shù)SKIPIF1<0的值域?yàn)椋?/p>
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<09.(2010·江西·高考真題)給出下列三個(gè)命題:①函數(shù)SKIPIF1<0與SKIPIF1<0是同一函數(shù);②若函數(shù)SKIPIF1<0與SKIPIF1<0的圖像關(guān)于直線SKIPIF1<0對稱,則函數(shù)SKIPIF1<0與SKIPIF1<0的圖像也關(guān)于直線SKIPIF1<0對稱;③若奇函數(shù)SKIPIF1<0對定義域內(nèi)任意SKIPIF1<0都有SKIPIF1<0,則SKIPIF1<0為周期函數(shù).其中真命題是(
)A.①② B.①③ C.②③ D.②10.(2021秋·甘肅蘭州·高一西北師大附中??计谥校┮阎瘮?shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<011.(2015·全國·高考真題)設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0A.3 B.6 C.9 D.1212.(2022秋·四川眉山·高三??奸_學(xué)考試)若函數(shù)SKIPIF1<0在R上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<013.(2018·全國·高考真題)設(shè)函數(shù)SKIPIF1<0,則滿足SKIPIF1<0的x的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<014.(2019·天津·高考真題)已知函數(shù)SKIPIF1<0若關(guān)于SKIPIF1<0的方程SKIPIF1<0恰有兩個(gè)互異的實(shí)數(shù)解,則SKIPIF1<0的取值范圍為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<015.(2023·全國·高三專題練習(xí))已知SKIPIF1<0,滿足SKIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<016.(2023·全國·高三專題練習(xí))已知SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0的大小關(guān)系是(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.不確定17.(2023·北京·高三專題練習(xí))若函數(shù)SKIPIF1<0的定義域和值域的交集為空集,則正數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0二、多選題18.(2023·重慶·統(tǒng)考模擬預(yù)測)已知函數(shù)SKIPIF1<0,則下列說法正確的是(
)A.SKIPIF1<0的定義域?yàn)镾KIPIF1<0B.SKIPIF1<0在SKIPIF1<0上的值域?yàn)镾KIPIF1<0C.若SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0D.若SKIPIF1<0,則SKIPIF1<0在定義域上單調(diào)遞增19.(2022秋·河北唐山·高三唐山市第十一中學(xué)??茧A段練習(xí))已知SKIPIF1<0表示不超過SKIPIF1<0的最大整數(shù),例如SKIPIF1<0,SKIPIF1<0等,定義SKIPIF1<0,則下列結(jié)論正確的有(
)A.SKIPIF1<0,SKIPIF1<0B.不等式SKIPIF1<0的解集為SKIPIF1<0C.SKIPIF1<0的值域?yàn)镾KIPIF1<0D.SKIPIF1<0是周期函數(shù)20.(2022秋·河南鄭州·高一校聯(lián)考期中)已知一次函數(shù)SKIPIF1<0滿足SKIPIF1<0,且點(diǎn)SKIPIF1<0在SKIPIF1<0的圖象上,其中SKIPIF1<0,SKIPIF1<0,則下列各式正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<021.(2023·全國·高三專題練習(xí))SKIPIF1<0是定義在SKIPIF1<0上的函數(shù),若SKIPIF1<0是奇函數(shù),SKIPIF1<0是偶函數(shù),函數(shù)SKIPIF1<0,則(
)A.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0 B.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<022.(2023·湖南常德·常德市一中校考模擬預(yù)測)已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0B.函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞增C.函數(shù)SKIPIF1<0是奇函數(shù)D.函數(shù)SKIPIF1<0的一個(gè)解析式為SKIPIF1<0三、填空題23.(2022·上海浦東新·華師大二附中??寄M預(yù)測)已知SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0,如果對于任意的SKIPIF1<0,總存在SKIPIF1<0,使得SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是.24.(2023·全國·高三專題練習(xí))若函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,則實(shí)數(shù)SKIPIF1<0的一個(gè)取值可以為.25.(2011·上海·高考真題)設(shè)SKIPIF1<0是定義在SKIPIF1<0上、以1為周期的函數(shù),若SKIPIF1<0在SKIPIF1<0上的值域?yàn)镾KIPIF1<0,則SKIPIF1<0在區(qū)間SKIPIF1<0上的值域?yàn)椋?6.(2020秋·上海浦東新·高一上海市實(shí)驗(yàn)學(xué)校校考期末)已知函數(shù)SKIPIF1<0滿足:(1)對任意SKIPIF1<0,恒有SKIPIF1<0成立;(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.若SKIPIF1<0,則滿足條件的最小的正實(shí)數(shù)SKIPIF1<0是27.(2021秋·甘肅蘭州·高三蘭州一中階段練習(xí))已知函數(shù)SKIPIF1<0對SKIPIF1<0均有SKIPIF1<0,若SKIPIF1<0恒成立,則實(shí)數(shù)m的取值范圍是.28.(2020·河南信陽·校考模擬預(yù)測)如圖放置的邊長為1的正方形SKIPIF1<0沿SKIPIF1<0軸滾動(dòng),點(diǎn)SKIPIF1<0恰好經(jīng)過原點(diǎn).設(shè)頂點(diǎn)SKIPIF1<0的軌跡方程是SKIPIF1<0,則對函數(shù)SKIPIF1<0有下列判斷:①函數(shù)SKIPIF1<0是偶函數(shù);②對任意的SKIPIF1<0,都有SKIPIF1<0;③函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減;④函數(shù)SKIPIF1<0的值域是SKIPIF1<0;⑤SKIPIF1<0.其中判斷正確的序號(hào)是.29.(2023春·高一統(tǒng)考階段練習(xí))設(shè)函數(shù)SKIPIF1<0=SKIPIF1<0,若函數(shù)SKIPIF1<0f(x)-a有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是.30.(2022·河南南陽·南陽中學(xué)校考模擬預(yù)測)設(shè)SKIPIF1<0表示p,q,r三者中最小的一個(gè).若函數(shù)SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的值域是.【三層練能力】一、單選題1.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù),且SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0為偶函數(shù),則下列結(jié)論不一定成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2022秋·福建龍巖·高一上杭一中??计谀┮阎瘮?shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<03.(2023·江西吉安·吉安三中??家荒#┮阎瘮?shù)SKIPIF1<0是定義在R上的函數(shù),其中SKIPIF1<0是奇函數(shù),SKIPIF1<0是偶函數(shù),且SKIPIF1<0,若對于任意SKIPIF1<0,都有SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2021秋·湖北·高一校聯(lián)考階段練習(xí))對函數(shù)SKIPIF1<0,如果存在SKIPIF1<0使得SKIPIF1<0,則稱SKIPIF1<0與SKIPIF1<0為函數(shù)圖像的一組奇對稱點(diǎn).若SKIPIF1<0(SKIPIF1<0為自然數(shù)的底數(shù))存在奇對稱點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題5.(2023·湖南益陽·安化縣第二中學(xué)??既#┮阎瘮?shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則下列結(jié)論正確的是(
)A.SKIPIF1<0在SKIPIF1<0上單調(diào)遞增B.當(dāng)SKIPIF1<0時(shí),方程SKIPIF1<0有且只有3個(gè)不同實(shí)根C.SKIPIF1<0的值域?yàn)镾KIPIF1<0D.若對于任意的SKIPIF1<0,都有SKIPIF1<0成立,則SKIPIF1<06.(2023·云南昆明·昆明市第三中學(xué)??寄M預(yù)測)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,若存在閉區(qū)間SKIPIF1<0,使得函數(shù)SKIPIF1<0同時(shí)滿足①SKIPIF1<0在SKIPIF1<0上是單調(diào)函數(shù);②SKIPIF1<0在SKIPIF1<0上的值域?yàn)镾KIPIF1<0,則稱區(qū)間SKIPIF1<0為SKIPIF1<0的“SKIPIF1<0倍值區(qū)間”.下列函數(shù)存在“3倍值區(qū)間”的有(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【一層練基礎(chǔ)】參考答案1.D【分析】根據(jù)函數(shù)的定義一一判斷各選項(xiàng)中函數(shù)是否符合,即可判斷出答案.【詳解】對于A,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,不符合函數(shù)定義,A錯(cuò)誤;對于B,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,不符合函數(shù)定義,B錯(cuò)誤;對于C,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,不符合函數(shù)定義,C錯(cuò)誤;對于D,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則存在SKIPIF1<0時(shí),SKIPIF1<0,符合函數(shù)定義,即存在函數(shù)SKIPIF1<0滿足:對任意SKIPIF1<0都有SKIPIF1<0,D正確,故選:D2.B【分析】首先,考查對數(shù)的定義域問題,也就是SKIPIF1<0的真數(shù)SKIPIF1<0一定要大于零,其次,分母不能是零.【詳解】解:由SKIPIF1<0,得SKIPIF1<0,又因?yàn)镾KIPIF1<0,即SKIPIF1<0,得SKIPIF1<0故,SKIPIF1<0的取值范圍是SKIPIF1<0,且SKIPIF1<0.定義域就是SKIPIF1<0故選:B.3.B【分析】首先根據(jù)題意得到SKIPIF1<0,再結(jié)合二次函數(shù)的性質(zhì)依次判斷選項(xiàng)即可.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0,所以SKIPIF1<0的最小值SKIPIF1<0,無最大值,為故A,C錯(cuò)誤.對選項(xiàng)B,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故B正確.對選項(xiàng)D,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故D錯(cuò)誤.故選:B4.A【解析】根據(jù)條件求出兩個(gè)函數(shù)的值域,結(jié)合若存在SKIPIF1<0,使得f(x1)=g(x2),等價(jià)為兩個(gè)集合有公共元素,然后根據(jù)集合關(guān)系進(jìn)行求解即可.【詳解】當(dāng)SKIPIF1<0x≤2時(shí),log2SKIPIF1<0f(x)≤log22,即﹣1≤f(x)≤1,則f(x)的值域?yàn)閇﹣1,1],當(dāng)SKIPIF1<0x≤2時(shí),2SKIPIF1<0a≤g(x)≤4+a,即1+a≤g(x)≤4+a,則g(x)的值域?yàn)閇1+a,4+a],若存在SKIPIF1<0,使得f(x1)=g(x2),則[1+a,4+a]∩[﹣1,1]≠?,若[1+a,4+a]∩[﹣1,1]=?,則1+a>1或4+a<﹣1,得a>0或a<﹣5,則當(dāng)[1+a,4+a]∩[﹣1,1]≠?時(shí),﹣5≤a≤0,即實(shí)數(shù)a的取值范圍是[﹣5,0],故選A.【點(diǎn)睛】本題主要考查函數(shù)與方程的應(yīng)用,根據(jù)條件求出兩個(gè)函數(shù)的值域,結(jié)合集合元素關(guān)系進(jìn)行求解是解決本題的關(guān)鍵.5.D【分析】先設(shè)出函數(shù)解析式,利用SKIPIF1<0恒成立,求出解析式,然后可得SKIPIF1<0.【詳解】設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0因?yàn)镾KIPIF1<0恒成立,所以SKIPIF1<0且SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,即有SKIPIF1<0.故選:D.【點(diǎn)睛】本題主要考查函數(shù)解析式的求解,明確函數(shù)類型時(shí),常用待定系數(shù)法求解函數(shù)解析式,側(cè)重考查數(shù)學(xué)抽象的核心素養(yǎng).6.A【分析】設(shè)SKIPIF1<0,則SKIPIF1<0,即可由SKIPIF1<0得SKIPIF1<0,解出SKIPIF1<0,從而得到SKIPIF1<0,進(jìn)而求出SKIPIF1<0的值.【詳解】根據(jù)題意,函數(shù)SKIPIF1<0在定義域SKIPIF1<0上單調(diào),且均有SKIPIF1<0,則SKIPIF1<0為常數(shù),設(shè)SKIPIF1<0,則SKIPIF1<0,則有SKIPIF1<0,解可得SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0;故選:A.7.A【分析】根據(jù)同一函數(shù)的定義,逐項(xiàng)驗(yàn)證定義域和對應(yīng)法則是否相同,即得.【詳解】對于A中,函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,定義域相同,對應(yīng)法則相同,所以是同一個(gè)函數(shù);對于B中,函數(shù)SKIPIF1<0和SKIPIF1<0的定義域都是SKIPIF1<0,但對應(yīng)法則不同,所以不是同一個(gè)函數(shù);對于C中,函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,定義域不相同,所以不是同一個(gè)函數(shù);對于D中,函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,定義域不相同,所以不是同一個(gè)函數(shù).故選:A.8.B【分析】分段求解:分別把0≤x≤1及1≤x≤2時(shí)的解析式求出即可.【詳解】當(dāng)0≤x≤1時(shí),設(shè)f(x)=kx,由圖象過點(diǎn)(1,SKIPIF1<0),得k=SKIPIF1<0,所以此時(shí)f(x)=SKIPIF1<0x;當(dāng)1≤x≤2時(shí),設(shè)f(x)=mx+n,由圖象過點(diǎn)(1,SKIPIF1<0),(2,0),得SKIPIF1<0,解得SKIPIF1<0所以此時(shí)f(x)=SKIPIF1<0.函數(shù)表達(dá)式可轉(zhuǎn)化為:y=SKIPIF1<0SKIPIF1<0|x-1|(0≤x≤2)故答案為B【點(diǎn)睛】本題考查函數(shù)解析式的求解問題,本題根據(jù)圖象可知該函數(shù)為分段函數(shù),分兩段用待定系數(shù)法求得.9.A【分析】由表格對應(yīng)關(guān)系,依次求解SKIPIF1<0,發(fā)現(xiàn)周期特點(diǎn),再并項(xiàng)求和.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,數(shù)列SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0.故選:A.【點(diǎn)睛】周期數(shù)列的求和一般可以從并項(xiàng)求和或分組求和的兩種思路出發(fā):并項(xiàng)是指先每個(gè)周期進(jìn)行求和,再計(jì)算多個(gè)周期的和,注意剩余項(xiàng)的處理;分組是指先將相等的項(xiàng)組合在一起求和,然后再整體求和.10.D【詳解】SKIPIF1<0,SKIPIF1<0,故選D.11.A【分析】先由SKIPIF1<0,求出函數(shù)SKIPIF1<0的值域,再由存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0成立,只需SKIPIF1<0即可,進(jìn)而可求出結(jié)果.【詳解】因?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,故SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),取等號(hào);綜上可得,SKIPIF1<0;又因?yàn)榇嬖趯?shí)數(shù)SKIPIF1<0,使得SKIPIF1<0成立,所以只需SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故選A【點(diǎn)睛】本題主要考查分段函數(shù)的值域,存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0成立,轉(zhuǎn)化為SKIPIF1<0是解題的關(guān)鍵,屬于常考題型.12.B【分析】分別畫出分段函數(shù)對應(yīng)的兩個(gè)函數(shù)圖象,再對實(shí)數(shù)SKIPIF1<0的取值進(jìn)行分類討論即可.【詳解】根據(jù)題意可得,在同一坐標(biāo)系下分別畫出函數(shù)SKIPIF1<0和SKIPIF1<0的圖象如下圖所示:由圖可知,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),兩圖象相交,若SKIPIF1<0的值域是SKIPIF1<0,以實(shí)數(shù)SKIPIF1<0為分界點(diǎn),可進(jìn)行如下分類討論:當(dāng)SKIPIF1<0時(shí),顯然兩圖象之間不連續(xù),即值域不為SKIPIF1<0;同理當(dāng)SKIPIF1<0,值域也不是SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),兩圖象相接或者有重合的部分,此時(shí)值域是SKIPIF1<0;綜上可知,實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:B13.D【分析】直接由兩段函數(shù)分別為減函數(shù)以及端點(diǎn)值的大小關(guān)系解不等式組即可.【詳解】由函數(shù)是(-∞,+∞)上的減函數(shù)可得SKIPIF1<0解得SKIPIF1<0.故選:D.14.C【解析】先求得SKIPIF1<0時(shí)SKIPIF1<0的值域,再根據(jù)題意,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0值域最小需滿足SKIPIF1<0,分析整理,即可得結(jié)果.【詳解】當(dāng)SKIPIF1<0,SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因?yàn)镾KIPIF1<0的值域?yàn)镽,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0值域最小需滿足SKIPIF1<0所以SKIPIF1<0,解得SKIPIF1<0,故選:C【點(diǎn)睛】本題考查已知函數(shù)值域求參數(shù)問題,解題要點(diǎn)在于,根據(jù)SKIPIF1<0時(shí)SKIPIF1<0的值域,可得SKIPIF1<0時(shí)SKIPIF1<0的值域,結(jié)合一次函數(shù)的圖像與性質(zhì),即可求得結(jié)果,考查分析理解,計(jì)算求值的能力,屬基礎(chǔ)題.15.ABD【分析】根據(jù)函數(shù)解析式,求出選項(xiàng)對應(yīng)的函數(shù)值,結(jié)合等差數(shù)列的等差中項(xiàng)和等比數(shù)列的等比中項(xiàng)的應(yīng)用依次判斷選項(xiàng)即可.【詳解】A:SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,由等差中項(xiàng)的應(yīng)用知,SKIPIF1<0成等差數(shù)列,所以A正確;B:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,由等差中項(xiàng)的應(yīng)用知,SKIPIF1<0成等差數(shù)列,所以B正確;C:SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,又SKIPIF1<0,所以C錯(cuò)誤;D:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,由等比中項(xiàng)的應(yīng)用知,SKIPIF1<0成等比數(shù)列,所以D正確.故選:ABD.16.ABC【分析】A選項(xiàng),單調(diào)區(qū)間不能用SKIPIF1<0號(hào)連接,即在定義域SKIPIF1<0不是單調(diào)遞減函數(shù),A錯(cuò)誤;B選項(xiàng),可舉出反例;C選項(xiàng),分段函數(shù)單調(diào)遞增,則在每段上函數(shù)均單調(diào)遞增,且在端點(diǎn)處,左邊函數(shù)值小于等于右邊函數(shù)的值;D選項(xiàng),利用抽象函數(shù)求定義域的方法進(jìn)行求解.【詳解】函數(shù)SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上都是減函數(shù),但在定義域SKIPIF1<0上不是減函數(shù),故A不正確;當(dāng)SKIPIF1<0是奇函數(shù)時(shí),SKIPIF1<0可能無意義,比如SKIPIF1<0,故B不正確;因?yàn)镾KIPIF1<0是增函數(shù),所以SKIPIF1<0,解得SKIPIF1<0,故C不正確;因?yàn)镾KIPIF1<0的定義域?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0的定義域?yàn)镾KIPIF1<0,故D正確.故選:ABC.17.BCD【分析】將函數(shù)轉(zhuǎn)化為SKIPIF1<0,再逐項(xiàng)判斷.【詳解】函數(shù)SKIPIF1<0,A.SKIPIF1<0的值域?yàn)镾KIPIF1<0,故錯(cuò)誤;B.SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,故正確;C.SKIPIF1<0,故正確;D.因?yàn)镾KIPIF1<0,則SKIPIF1<0的最小值為SKIPIF1<0,故正確;故選:BCD18.ABC【分析】令SKIPIF1<0可得SKIPIF1<0,令SKIPIF1<0可得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,根據(jù)已知條件得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.【詳解】對任意SKIPIF1<0,恒有SKIPIF1<0,令SKIPIF1<0可得SKIPIF1<0,因?yàn)楫?dāng)SKIPIF1<0時(shí),SKIPIF1<0故SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,根據(jù)已知條件得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故選:ABC.19.ACD【分析】由SKIPIF1<0,分別代入求SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:ACD.20.AC【分析】根據(jù)奇函數(shù)和偶函數(shù)定義可構(gòu)造方程組求得SKIPIF1<0,由此依次判斷各個(gè)選項(xiàng)即可.【詳解】由SKIPIF1<0得:SKIPIF1<0,又SKIPIF1<0分別是定義在SKIPIF1<0上的奇函數(shù)和偶函數(shù),SKIPIF1<0;由SKIPIF1<0得:SKIPIF1<0,SKIPIF1<0;對于A,SKIPIF1<0,A正確;對于B,SKIPIF1<0,B錯(cuò)誤;對于CD,SKIPIF1<0,C正確,D錯(cuò)誤.故選:AC.21.BC【分析】根據(jù)函數(shù)解析式,分別解AB選項(xiàng)對應(yīng)的方程,即可判定A錯(cuò),B正確;求出SKIPIF1<0的解析式,判定SKIPIF1<0與SKIPIF1<0的單調(diào)區(qū)間與單調(diào)性,即可得出C正確;利用特殊值法,即可判斷D錯(cuò).【詳解】因?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,顯然都不滿足SKIPIF1<0,故A錯(cuò);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,顯然SKIPIF1<0滿足SKIPIF1<0,故B正確;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0顯然單調(diào)遞減,即SKIPIF1<0的減區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0顯然單調(diào)遞增,即SKIPIF1<0的增區(qū)間為SKIPIF1<0;又SKIPIF1<0,因此SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增;即函數(shù)SKIPIF1<0與SKIPIF1<0的單調(diào)區(qū)間和單調(diào)性相同,故C正確;D選項(xiàng),若不妨令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,此時(shí)SKIPIF1<0,故D錯(cuò);故選:BC.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:求解本題的關(guān)鍵在于根據(jù)解析式判定分段函數(shù)的性質(zhì),利用分段函數(shù)的性質(zhì),結(jié)合選項(xiàng)即可得解.22.BCD【分析】分別求得SKIPIF1<0和SKIPIF1<0時(shí)的最小值,結(jié)合題意,即可得答案.【詳解】當(dāng)SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0為二次函數(shù),要想在SKIPIF1<0處取最小,則對稱軸要滿足SKIPIF1<0,且SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故選:BCD.【點(diǎn)睛】本題考查分段函數(shù)的應(yīng)用,考查分析理解,求值化簡的能力,考查分類討論的思想,屬中檔題.23.SKIPIF1<0【分析】由題可得SKIPIF1<0或SKIPIF1<0,然后根據(jù)SKIPIF1<0的定義即得.【詳解】由SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0.24.SKIPIF1<0【分析】先求出函數(shù)SKIPIF1<0的定義域,進(jìn)而求出SKIPIF1<0的定義域,求出SKIPIF1<0的解析式,即可得出結(jié)論.【詳解】SKIPIF1<0,定義域均為SKIPIF1<0,SKIPIF1<0,定義域?yàn)镾KIPIF1<0,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0【點(diǎn)睛】本題考查函數(shù)解析式的求解,根據(jù)已知先確定函數(shù)的定義域是解題的關(guān)鍵,容易被忽略,屬于基礎(chǔ)題.25.SKIPIF1<0【分析】根據(jù)函數(shù)的定義域,結(jié)合函數(shù)的單調(diào)性求解即可.【詳解】函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的減函數(shù),且SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<026.SKIPIF1<0(答案不唯一)【分析】取SKIPIF1<0,驗(yàn)證定義域,導(dǎo)數(shù),值域即可.【詳解】取SKIPIF1<0,因?yàn)镾KIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的定義城為SKIPIF1<0,符合①;SKIPIF1<0,符合②;因?yàn)镾KIPIF1<0,所以SKIPIF1<0的值域?yàn)镾KIPIF1<0,符合③.故答案為:SKIPIF1<0(答案不唯一)27.SKIPIF1<0(答案不唯一)【分析】利用導(dǎo)數(shù)求出函數(shù)的單調(diào)性,再求出SKIPIF1<0時(shí)所對應(yīng)的自變量,即可求解.【詳解】SKIPIF1<0,令SKIPIF1<0可得SKIPIF1<0,所以當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,由此可知定義域可以是SKIPIF1<0,故答案為:SKIPIF1<0(答案不唯一)28.SKIPIF1<0【分析】因?yàn)镾KIPIF1<0恒成立,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,驗(yàn)證SKIPIF1<0和SKIPIF1<0,即可得出SKIPIF1<0的值.【詳解】因?yàn)镾KIPIF1<0恒成立,所以SKIPIF1<0即SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0不滿足條件當(dāng)SKIPI
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中考英語作文:暑假計(jì)劃
- 2025年農(nóng)業(yè)生產(chǎn)計(jì)劃
- 2025幼兒園大班教師個(gè)人計(jì)劃范文
- 學(xué)校新聞宣傳工作計(jì)劃如何做好
- 八年級(jí)期末復(fù)習(xí)計(jì)劃
- 文學(xué)《小鹿的玫瑰花》課件
- 幼兒園中班教學(xué)計(jì)劃021集錦
- 學(xué)校行政工作總結(jié)和計(jì)劃-行政工作總結(jié)和計(jì)劃
- 法制教育個(gè)人工作計(jì)劃完整版
- 《氣瓶標(biāo)識(shí)及填充量》課件
- 科研倫理與學(xué)術(shù)規(guī)范(研究生)期末試題
- 幼兒游戲的課件
- 教育科學(xué)研究方法智慧樹知到期末考試答案章節(jié)答案2024年浙江師范大學(xué)
- 美國史智慧樹知到期末考試答案章節(jié)答案2024年東北師范大學(xué)
- 研究方法與學(xué)術(shù)寫作智慧樹知到期末考試答案章節(jié)答案2024年溫州大學(xué)
- 可愛的嘉興三年級(jí)教材分析與教案(共23頁)
- 小學(xué)語文五年級(jí)下冊期末綜合練習(xí)試題含答案(共2套)
- 玩具風(fēng)險(xiǎn)評估報(bào)告
- 二年級(jí)上冊認(rèn)識(shí)時(shí)間練習(xí)題
- 電視監(jiān)控系統(tǒng)招標(biāo)評分表
- 國有企業(yè)采購管理制度
評論
0/150
提交評論