版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省長沙市一中、湖南師大附中2025屆高考壓軸卷數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若直線與圓相交所得弦長為,則()A.1 B.2 C. D.32.函數(shù)的圖象如圖所示,則它的解析式可能是()A. B.C. D.3.若為虛數(shù)單位,則復(fù)數(shù)在復(fù)平面上對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知集合,集合,則()A. B. C. D.5.已知橢圓(a>b>0)與雙曲線(a>0,b>0)的焦點相同,則雙曲線漸近線方程為()A. B.C. D.6.定義在R上的函數(shù)滿足,為的導(dǎo)函數(shù),已知的圖象如圖所示,若兩個正數(shù)滿足,的取值范圍是()A. B. C. D.7.一個幾何體的三視圖如圖所示,則這個幾何體的體積為()A. B.C. D.8.網(wǎng)格紙上小正方形邊長為1單位長度,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為()A.1 B. C.3 D.49.等比數(shù)列若則()A.±6 B.6 C.-6 D.10.已知拋物線經(jīng)過點,焦點為,則直線的斜率為()A. B. C. D.11.已知三棱錐中,是等邊三角形,,則三棱錐的外接球的表面積為()A. B. C. D.12.等比數(shù)列中,,則與的等比中項是()A.±4 B.4 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若恒成立,則的取值范圍是___________.14.函數(shù)在區(qū)間內(nèi)有且僅有兩個零點,則實數(shù)的取值范圍是_____.15.已知向量,,若向量與向量平行,則實數(shù)___________.16.如圖,在正四棱柱中,P是側(cè)棱上一點,且.設(shè)三棱錐的體積為,正四棱柱的體積為V,則的值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)一種游戲的規(guī)則為拋擲一枚硬幣,每次正面向上得2分,反面向上得1分.(1)設(shè)拋擲4次的得分為,求變量的分布列和數(shù)學(xué)期望.(2)當(dāng)游戲得分為時,游戲停止,記得分的概率和為.①求;②當(dāng)時,記,證明:數(shù)列為常數(shù)列,數(shù)列為等比數(shù)列.18.(12分)在中,角的對邊分別為,且,.(1)求的值;(2)若求的面積.19.(12分)在ABC中,角A,B,C的對邊分別為a,b,c,已知,(Ⅰ)求的大?。唬á颍┤?,求面積的最大值.20.(12分)已知等差數(shù)列{an}的前n項和為Sn,且(1)求數(shù)列{a(2)求數(shù)列{1Sn}的前21.(12分)已知橢圓,直線不過原點且不平行于坐標軸,與有兩個交點,,線段的中點為.(Ⅰ)證明:直線的斜率與的斜率的乘積為定值;(Ⅱ)若過點,延長線段與交于點,四邊形能否為平行四邊形?若能,求此時的斜率,若不能,說明理由.22.(10分)已知的內(nèi)角,,的對邊分別為,,,且.(1)求;(2)若的面積為,,求的周長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
將圓的方程化簡成標準方程,再根據(jù)垂徑定理求解即可.【詳解】圓的標準方程,圓心坐標為,半徑為,因為直線與圓相交所得弦長為,所以直線過圓心,得,即.故選:A【點睛】本題考查了根據(jù)垂徑定理求解直線中參數(shù)的方法,屬于基礎(chǔ)題.2、B【解析】
根據(jù)定義域排除,求出的值,可以排除,考慮排除.【詳解】根據(jù)函數(shù)圖象得定義域為,所以不合題意;選項,計算,不符合函數(shù)圖象;對于選項,與函數(shù)圖象不一致;選項符合函數(shù)圖象特征.故選:B【點睛】此題考查根據(jù)函數(shù)圖象選擇合適的解析式,主要利用函數(shù)性質(zhì)分析,常見方法為排除法.3、D【解析】
根據(jù)復(fù)數(shù)的運算,化簡得到,再結(jié)合復(fù)數(shù)的表示,即可求解,得到答案.【詳解】由題意,根據(jù)復(fù)數(shù)的運算,可得,所對應(yīng)的點為位于第四象限.故選D.【點睛】本題主要考查了復(fù)數(shù)的運算,以及復(fù)數(shù)的幾何意義,其中解答中熟記復(fù)數(shù)的運算法則,準確化簡復(fù)數(shù)為代數(shù)形式是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.4、D【解析】
可求出集合,,然后進行并集的運算即可.【詳解】解:,;.故選.【點睛】考查描述法、區(qū)間的定義,對數(shù)函數(shù)的單調(diào)性,以及并集的運算.5、A【解析】
由題意可得,即,代入雙曲線的漸近線方程可得答案.【詳解】依題意橢圓與雙曲線即的焦點相同,可得:,即,∴,可得,雙曲線的漸近線方程為:,故選:A.【點睛】本題考查橢圓和雙曲線的方程和性質(zhì),考查漸近線方程的求法,考查方程思想和運算能力,屬于基礎(chǔ)題.6、C【解析】
先從函數(shù)單調(diào)性判斷的取值范圍,再通過題中所給的是正數(shù)這一條件和常用不等式方法來確定的取值范圍.【詳解】由的圖象知函數(shù)在區(qū)間單調(diào)遞增,而,故由可知.故,又有,綜上得的取值范圍是.故選:C【點睛】本題考查了函數(shù)單調(diào)性和不等式的基礎(chǔ)知識,屬于中檔題.7、B【解析】
還原幾何體可知原幾何體為半個圓柱和一個四棱錐組成的組合體,分別求解兩個部分的體積,加和得到結(jié)果.【詳解】由三視圖還原可知,原幾何體下半部分為半個圓柱,上半部分為一個四棱錐半個圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項:【點睛】本題考查三視圖的還原、組合體體積的求解問題,關(guān)鍵在于能夠準確還原幾何體,從而分別求解各部分的體積.8、A【解析】
采用數(shù)形結(jié)合,根據(jù)三視圖可知該幾何體為三棱錐,然后根據(jù)錐體體積公式,可得結(jié)果.【詳解】根據(jù)三視圖可知:該幾何體為三棱錐如圖該幾何體為三棱錐,長度如上圖所以所以所以故選:A【點睛】本題考查根據(jù)三視圖求直觀圖的體積,熟悉常見圖形的三視圖:比如圓柱,圓錐,球,三棱錐等;對本題可以利用長方體,根據(jù)三視圖刪掉沒有的點與線,屬中檔題.9、B【解析】
根據(jù)等比中項性質(zhì)代入可得解,由等比數(shù)列項的性質(zhì)確定值即可.【詳解】由等比數(shù)列中等比中項性質(zhì)可知,,所以,而由等比數(shù)列性質(zhì)可知奇數(shù)項符號相同,所以,故選:B.【點睛】本題考查了等比數(shù)列中等比中項的簡單應(yīng)用,注意項的符號特征,屬于基礎(chǔ)題.10、A【解析】
先求出,再求焦點坐標,最后求的斜率【詳解】解:拋物線經(jīng)過點,,,,故選:A【點睛】考查拋物線的基礎(chǔ)知識及斜率的運算公式,基礎(chǔ)題.11、D【解析】
根據(jù)底面為等邊三角形,取中點,可證明平面,從而,即可證明三棱錐為正三棱錐.取底面等邊的重心為,可求得到平面的距離,畫出幾何關(guān)系,設(shè)球心為,即可由球的性質(zhì)和勾股定理求得球的半徑,進而得球的表面積.【詳解】設(shè)為中點,是等邊三角形,所以,又因為,且,所以平面,則,由三線合一性質(zhì)可知所以三棱錐為正三棱錐,設(shè)底面等邊的重心為,可得,,所以三棱錐的外接球球心在面下方,設(shè)為,如下圖所示:由球的性質(zhì)可知,平面,且在同一直線上,設(shè)球的半徑為,在中,,即,解得,所以三棱錐的外接球表面積為,故選:D.【點睛】本題考查了三棱錐的結(jié)構(gòu)特征和相關(guān)計算,正三棱錐的外接球半徑求法,球的表面積求法,對空間想象能力要求較高,屬于中檔題.12、A【解析】
利用等比數(shù)列的性質(zhì)可得,即可得出.【詳解】設(shè)與的等比中項是.
由等比數(shù)列的性質(zhì)可得,.
∴與的等比中項
故選A.【點睛】本題考查了等比中項的求法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求導(dǎo)得到,討論和兩種情況,計算時,函數(shù)在上單調(diào)遞減,故,不符合,排除,得到答案?!驹斀狻恳驗?,所以,因為,所以.當(dāng),即時,,則在上單調(diào)遞增,從而,故符合題意;當(dāng),即時,因為在上單調(diào)遞增,且,所以存在唯一的,使得.令,得,則在上單調(diào)遞減,從而,故不符合題意.綜上,的取值范圍是.故答案為:.【點睛】本題考查了不等式恒成立問題,轉(zhuǎn)化為函數(shù)的最值問題是解題的關(guān)鍵.14、【解析】
對函數(shù)零點問題等價轉(zhuǎn)化,分離參數(shù)討論交點個數(shù),數(shù)形結(jié)合求解.【詳解】由題:函數(shù)在區(qū)間內(nèi)有且僅有兩個零點,,等價于函數(shù)恰有兩個公共點,作出大致圖象:要有兩個交點,即,所以.故答案為:【點睛】此題考查函數(shù)零點問題,根據(jù)函數(shù)零點個數(shù)求參數(shù)的取值范圍,關(guān)鍵在于對函數(shù)零點問題恰當(dāng)變形,等價轉(zhuǎn)化,數(shù)形結(jié)合求解.15、【解析】
由題可得,因為向量與向量平行,所以,解得.16、【解析】
設(shè)正四棱柱的底面邊長,高,再根據(jù)柱體、錐體的體積公式計算可得.【詳解】解:設(shè)正四棱柱的底面邊長,高,則,即故答案為:【點睛】本題考查柱體、錐體的體積計算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)分布列見解析,數(shù)學(xué)期望為6;(2)①;②證明見解析【解析】
(1)變量的所有可能取值為4,5,6,7,8,分別求出對應(yīng)的概率,進而可求出變量的分布列和數(shù)學(xué)期望;(2)①得2分只需要拋擲一次正面向上或兩次反面向上,分別求出兩種情況的概率,進而可求得;②得分分兩種情況,第一種為得分后拋擲一次正面向上,第二種為得分后拋擲一次反面向上,可知當(dāng)且時,,結(jié)合,可推出,從而可證明數(shù)列為常數(shù)列;結(jié)合,可推出,進而可證明數(shù)列為等比數(shù)列.【詳解】(1)變量的所有可能取值為4,5,6,7,8.每次拋擲一次硬幣,正面向上的概率為,反面向上的概率也為,則,.所以變量的分布列為:45678故變量的數(shù)學(xué)期望為.(2)①得2分只需要拋擲一次正面向上或兩次反面向上,概率的和為.②得分分兩種情況,第一種為得分后拋擲一次正面向上,第二種為得分后拋擲一次反面向上,故且時,有,則時,,所以,故數(shù)列為常數(shù)列;又,,所以數(shù)列為等比數(shù)列.【點睛】本題考查離散型隨機變量的分布列及數(shù)學(xué)期望,考查常數(shù)列及等比數(shù)列的證明,考查學(xué)生的計算求解能力與推理論證能力,屬于中檔題.18、(1)3(2)78【解析】試題分析:(1)由兩角和差公式得到,由三角形中的數(shù)值關(guān)系得到,進而求得數(shù)值;(2)由三角形的三個角的關(guān)系得到,再由正弦定理得到b=15,故面積公式為.解析:(1)在中,由,得為銳角,所以,所以,所以.(2)在三角形中,由,所以,由,由正弦定理,得,所以的面積.19、(1)(2)【解析】
分析:(1)利用正弦定理以及誘導(dǎo)公式與和角公式,結(jié)合特殊角的三角函數(shù)值,求得角C;(2)運用向量的平方就是向量模的平方,以及向量數(shù)量積的定義,結(jié)合基本不等式,求得的最大值,再由三角形的面積公式計算即可得到所求的值.詳解:(1)∵,,(Ⅱ)取中點,則,在中,,(注:也可將兩邊平方)即,,所以,當(dāng)且僅當(dāng)時取等號.此時,其最大值為.點睛:該題考查的是有關(guān)三角形的問題,涉及到的知識點有正弦定理,誘導(dǎo)公式,和角公式,向量的平方即為向量模的平方,基本不等式,三角形的面積公式,在解題的過程中,需要正確使用相關(guān)的公式進行運算即可求得結(jié)果.20、(1)an=2n【解析】
(1)先設(shè)出數(shù)列的公差為d,結(jié)合題中條件,求出首項和公差,即可得出結(jié)果.(2)利用裂項相消法求出數(shù)列的和.【詳解】解:(1)設(shè)公差為d的等差數(shù)列{an}且a1+a則有:a1解得:a1=3,所以:a(2)由于:an所以:Sn則:1S則:Tn=1【點睛】本題考查的知識要點:數(shù)列的通項公式的求法及應(yīng)用,裂項相消法在數(shù)列求和中的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.21、(Ⅰ)詳見解析;(Ⅱ)能,或.【解析】試題分析:(1)設(shè)直線,直線方程與橢圓方程聯(lián)立,根據(jù)韋達定理求根與系數(shù)的關(guān)系,并表示直線的斜率,再表示;(2)第一步由(Ⅰ)得的方程為.設(shè)點的橫坐標為,直線與橢圓方程聯(lián)立求點的坐標,第二步再整理點的坐標,如果能構(gòu)成平行四邊形,只需,如果有值,并且滿足,的條件就說明存在,否則不存在.試題解析:解:(1)設(shè)直線,,,.∴由得,∴,.∴直線的斜率,即.即直線的斜率與的斜率的乘積為定值.(2)四邊形能為平行四邊形.∵直線過點,∴不過原點且與有兩個交點的充要條件是,由(Ⅰ)得的方程為.設(shè)點的橫坐標為.∴由得,即將點的坐標代入直線的方程得,因此.四邊形為平行四邊形當(dāng)且僅當(dāng)線段與線段互相平分,即∴.解得,.∵,,,∴當(dāng)?shù)男甭蕿榛驎r,四邊形為平行四邊形.考點:直線與橢圓的位置關(guān)系的綜合應(yīng)用【一題多解】第一問涉及中點弦,當(dāng)直線與圓錐曲線相交時,點是弦的中點,(1)知道中點坐標,求直線的斜率,或知道直線斜率求中點坐標的關(guān)系,或知道求直線斜率與直線斜率的關(guān)系時,也可以選擇點差法,設(shè),,代入橢圓方程,兩式相減,化簡為,兩邊同時除以得,而,,即得到結(jié)果,(2)對于用坐標法來解決幾何性質(zhì)問題,那
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024至2030年中國生物質(zhì)燃料木質(zhì)顆粒行業(yè)投資前景及策略咨詢研究報告
- 2024至2030年中國無線雙水位接收顯示器行業(yè)投資前景及策略咨詢研究報告
- 2024至2030年中國微電腦控制蓄電池容量分選儀行業(yè)投資前景及策略咨詢研究報告
- 2024至2030年自清潔過濾器項目投資價值分析報告
- 2024至2030年化學(xué)交聯(lián)聚乙烯發(fā)泡片材項目投資價值分析報告
- 土地整治項目開發(fā)合同范本2025年
- 2024年新能源項目施工變壓器供應(yīng)及售后服務(wù)合同3篇
- 2025訂購合同范本
- 2024年物業(yè)管理與開發(fā)商合作合同樣本版
- 2025年圍擋安裝施工合同
- 2023-2024學(xué)年山東省濟南市中區(qū)數(shù)學(xué)三年級第一學(xué)期期末統(tǒng)考試題含答案
- 部編版語文一年級上冊1-8單元全冊語文園地課件PPT(附教案+課堂練習(xí))
- 2023年江西省公安機關(guān)警務(wù)輔助人員條例訓(xùn)練題庫115題及答案
- 國開2023春計算機組網(wǎng)技術(shù)形考任務(wù)一參考答案
- 里氏硬度計算表
- mt煤礦用氮氣防滅火技術(shù)
- 招聘教研員面試試題
- 鋼結(jié)構(gòu)設(shè)計手冊
- 論WTO法律規(guī)則下的新貿(mào)易壁壘
- 軍衛(wèi)一號數(shù)據(jù)結(jié)構(gòu)手冊
- PICC+CVC+輸液港使用與維護
評論
0/150
提交評論