湖北省恩施州建始縣一中2025屆高考沖刺數(shù)學(xué)模擬試題含解析_第1頁
湖北省恩施州建始縣一中2025屆高考沖刺數(shù)學(xué)模擬試題含解析_第2頁
湖北省恩施州建始縣一中2025屆高考沖刺數(shù)學(xué)模擬試題含解析_第3頁
湖北省恩施州建始縣一中2025屆高考沖刺數(shù)學(xué)模擬試題含解析_第4頁
湖北省恩施州建始縣一中2025屆高考沖刺數(shù)學(xué)模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖北省恩施州建始縣一中2025屆高考沖刺數(shù)學(xué)模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.偶函數(shù)關(guān)于點(diǎn)對(duì)稱,當(dāng)時(shí),,求()A. B. C. D.2.是正四面體的面內(nèi)一動(dòng)點(diǎn),為棱中點(diǎn),記與平面成角為定值,若點(diǎn)的軌跡為一段拋物線,則()A. B. C. D.3.方程在區(qū)間內(nèi)的所有解之和等于()A.4 B.6 C.8 D.104.已知復(fù)數(shù)滿足,則()A. B.2 C.4 D.35.某校團(tuán)委對(duì)“學(xué)生性別與中學(xué)生追星是否有關(guān)”作了一次調(diào)查,利用列聯(lián)表,由計(jì)算得,參照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正確結(jié)論是()A.有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星無關(guān)”B.有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”C.在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星無關(guān)”D.在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”6.設(shè)拋物線上一點(diǎn)到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.37.為了進(jìn)一步提升駕駛?cè)私煌ò踩拿饕庾R(shí),駕考新規(guī)要求駕校學(xué)員必須到街道路口執(zhí)勤站崗,協(xié)助交警勸導(dǎo)交通.現(xiàn)有甲、乙等5名駕校學(xué)員按要求分配到三個(gè)不同的路口站崗,每個(gè)路口至少一人,且甲、乙在同一路口的分配方案共有()A.12種 B.24種 C.36種 D.48種8.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,則不可能為()A. B. C. D.9.2019年10月1日上午,慶祝中華人民共和國成立70周年閱兵儀式在天安門廣場(chǎng)隆重舉行.這次閱兵不僅展示了我國的科技軍事力量,更是讓世界感受到了中國的日新月異.今年的閱兵方陣有一個(gè)很搶眼,他們就是院??蒲蟹疥?他們是由軍事科學(xué)院、國防大學(xué)、國防科技大學(xué)聯(lián)合組建.若已知甲、乙、丙三人來自上述三所學(xué)校,學(xué)歷分別有學(xué)士、碩士、博士學(xué)位.現(xiàn)知道:①甲不是軍事科學(xué)院的;②來自軍事科學(xué)院的不是博士;③乙不是軍事科學(xué)院的;④乙不是博士學(xué)位;⑤國防科技大學(xué)的是研究生.則丙是來自哪個(gè)院校的,學(xué)位是什么()A.國防大學(xué),研究生 B.國防大學(xué),博士C.軍事科學(xué)院,學(xué)士 D.國防科技大學(xué),研究生10.若函數(shù)在處有極值,則在區(qū)間上的最大值為()A. B.2 C.1 D.311.已知直線過圓的圓心,則的最小值為()A.1 B.2 C.3 D.412.在區(qū)間上隨機(jī)取一個(gè)數(shù),使得成立的概率為等差數(shù)列的公差,且,若,則的最小值為()A.8 B.9 C.10 D.11二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,,若,則______.14.(x+y)(2x-y)5的展開式中x3y3的系數(shù)為________.15.不等式的解集為________16.一個(gè)袋中裝著標(biāo)有數(shù)字1,2,3,4,5的小球各2個(gè),從中任意摸取3個(gè)小球,每個(gè)小球被取出的可能性相等,則取出的3個(gè)小球中數(shù)字最大的為4的概率是__.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)把的參數(shù)方程化為極坐標(biāo)方程:(2)求與交點(diǎn)的極坐標(biāo).18.(12分)已知函數(shù),其中為實(shí)常數(shù).(1)若存在,使得在區(qū)間內(nèi)單調(diào)遞減,求的取值范圍;(2)當(dāng)時(shí),設(shè)直線與函數(shù)的圖象相交于不同的兩點(diǎn),,證明:.19.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),為上的動(dòng)點(diǎn),點(diǎn)滿足,點(diǎn)的軌跡為曲線.(Ⅰ)求的方程;(Ⅱ)在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,射線與的異于極點(diǎn)的交點(diǎn)為,與的異于極點(diǎn)的交點(diǎn)為,求.20.(12分)如圖所示,在四棱錐中,底面是邊長為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點(diǎn).(1)求證:平面;(2)(文科)求三棱錐的體積;(理科)求二面角的正切值.21.(12分)已知函數(shù).(1)當(dāng)(為自然對(duì)數(shù)的底數(shù))時(shí),求函數(shù)的極值;(2)為的導(dǎo)函數(shù),當(dāng),時(shí),求證:.22.(10分)已知圓:和拋物線:,為坐標(biāo)原點(diǎn).(1)已知直線和圓相切,與拋物線交于兩點(diǎn),且滿足,求直線的方程;(2)過拋物線上一點(diǎn)作兩直線和圓相切,且分別交拋物線于兩點(diǎn),若直線的斜率為,求點(diǎn)的坐標(biāo).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

推導(dǎo)出函數(shù)是以為周期的周期函數(shù),由此可得出,代值計(jì)算即可.【詳解】由于偶函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,則,,,則,所以,函數(shù)是以為周期的周期函數(shù),由于當(dāng)時(shí),,則.故選:D.【點(diǎn)睛】本題考查利用函數(shù)的對(duì)稱性和奇偶性求函數(shù)值,推導(dǎo)出函數(shù)的周期性是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.2、B【解析】

設(shè)正四面體的棱長為,建立空間直角坐標(biāo)系,求出各點(diǎn)的坐標(biāo),求出面的法向量,設(shè)的坐標(biāo),求出向量,求出線面所成角的正弦值,再由角的范圍,結(jié)合為定值,得出為定值,且的軌跡為一段拋物線,所以求出坐標(biāo)的關(guān)系,進(jìn)而求出正切值.【詳解】由題意設(shè)四面體的棱長為,設(shè)為的中點(diǎn),以為坐標(biāo)原點(diǎn),以為軸,以為軸,過垂直于面的直線為軸,建立如圖所示的空間直角坐標(biāo)系,則可得,,取的三等分點(diǎn)、如圖,則,,,,所以、、、、,由題意設(shè),,和都是等邊三角形,為的中點(diǎn),,,,平面,為平面的一個(gè)法向量,因?yàn)榕c平面所成角為定值,則,由題意可得,因?yàn)榈能壽E為一段拋物線且為定值,則也為定值,,可得,此時(shí),則,.故選:B.【點(diǎn)睛】考查線面所成的角的求法,及正切值為定值時(shí)的情況,屬于中等題.3、C【解析】

畫出函數(shù)和的圖像,和均關(guān)于點(diǎn)中心對(duì)稱,計(jì)算得到答案.【詳解】,驗(yàn)證知不成立,故,畫出函數(shù)和的圖像,易知:和均關(guān)于點(diǎn)中心對(duì)稱,圖像共有8個(gè)交點(diǎn),故所有解之和等于.故選:.【點(diǎn)睛】本題考查了方程解的問題,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力,確定函數(shù)關(guān)于點(diǎn)中心對(duì)稱是解題的關(guān)鍵.4、A【解析】

由復(fù)數(shù)除法求出,再由模的定義計(jì)算出模.【詳解】.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的除法法則,考查復(fù)數(shù)模的運(yùn)算,屬于基礎(chǔ)題.5、B【解析】

通過與表中的數(shù)據(jù)6.635的比較,可以得出正確的選項(xiàng).【詳解】解:,可得有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”,故選B.【點(diǎn)睛】本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用問題,屬于基礎(chǔ)題.6、A【解析】

分析:題設(shè)的直線與拋物線是相離的,可以化成,其中是點(diǎn)到準(zhǔn)線的距離,也就是到焦點(diǎn)的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無解,所以直線與拋物線是相離的.由,而為到準(zhǔn)線的距離,故為到焦點(diǎn)的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點(diǎn)睛:拋物線中與線段的長度相關(guān)的最值問題,可利用拋物線的幾何性質(zhì)把動(dòng)線段的長度轉(zhuǎn)化為到準(zhǔn)線或焦點(diǎn)的距離來求解.7、C【解析】

先將甲、乙兩人看作一個(gè)整體,當(dāng)作一個(gè)元素,再將這四個(gè)元素分成3個(gè)部分,每一個(gè)部分至少一個(gè),再將這3部分分配到3個(gè)不同的路口,根據(jù)分步計(jì)數(shù)原理可得選項(xiàng).【詳解】把甲、乙兩名交警看作一個(gè)整體,個(gè)人變成了4個(gè)元素,再把這4個(gè)元素分成3部分,每部分至少有1個(gè)人,共有種方法,再把這3部分分到3個(gè)不同的路口,有種方法,由分步計(jì)數(shù)原理,共有種方案。故選:C.【點(diǎn)睛】本題主要考查排列與組合,常常運(yùn)用捆綁法,插空法,先分組后分配等一些基本思想和方法解決問題,屬于中檔題.8、D【解析】

依題意,設(shè),由,得,再一一驗(yàn)證.【詳解】設(shè),因?yàn)?,所以,?jīng)驗(yàn)證不滿足,故選:D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的概念、復(fù)數(shù)的幾何意義,還考查了推理論證能力,屬于基礎(chǔ)題.9、C【解析】

根據(jù)①③可判斷丙的院校;由②和⑤可判斷丙的學(xué)位.【詳解】由題意①甲不是軍事科學(xué)院的,③乙不是軍事科學(xué)院的;則丙來自軍事科學(xué)院;由②來自軍事科學(xué)院的不是博士,則丙不是博士;由⑤國防科技大學(xué)的是研究生,可知丙不是研究生,故丙為學(xué)士.綜上可知,丙來自軍事科學(xué)院,學(xué)位是學(xué)士.故選:C.【點(diǎn)睛】本題考查了合情推理的簡(jiǎn)單應(yīng)用,由條件的相互牽制判斷符合要求的情況,屬于基礎(chǔ)題.10、B【解析】

根據(jù)極值點(diǎn)處的導(dǎo)數(shù)為零先求出的值,然后再按照求函數(shù)在連續(xù)的閉區(qū)間上最值的求法計(jì)算即可.【詳解】解:由已知得,,,經(jīng)檢驗(yàn)滿足題意.,.由得;由得或.所以函數(shù)在上遞增,在上遞減,在上遞增.則,,由于,所以在區(qū)間上的最大值為2.故選:B.【點(diǎn)睛】本題考查了導(dǎo)數(shù)極值的性質(zhì)以及利用導(dǎo)數(shù)求函數(shù)在連續(xù)的閉區(qū)間上的最值問題的基本思路,屬于中檔題.11、D【解析】

圓心坐標(biāo)為,代入直線方程,再由乘1法和基本不等式,展開計(jì)算即可得到所求最小值.【詳解】圓的圓心為,由題意可得,即,,,則,當(dāng)且僅當(dāng)且即時(shí)取等號(hào),故選:.【點(diǎn)睛】本題考查最值的求法,注意運(yùn)用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時(shí)考查直線與圓的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.12、D【解析】

由題意,本題符合幾何概型,只要求出區(qū)間的長度以及使不等式成立的的范圍區(qū)間長度,利用幾何概型公式可得概率,即等差數(shù)列的公差,利用條件,求得,從而求得,解不等式求得結(jié)果.【詳解】由題意,本題符合幾何概型,區(qū)間長度為6,使得成立的的范圍為,區(qū)間長度為2,故使得成立的概率為,又,,,令,則有,故的最小值為11,故選:D.【點(diǎn)睛】該題考查的是有關(guān)幾何概型與等差數(shù)列的綜合題,涉及到的知識(shí)點(diǎn)有長度型幾何概型概率公式,等差數(shù)列的通項(xiàng)公式,屬于基礎(chǔ)題目.二、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】

由向量垂直得向量的數(shù)量積為0,根據(jù)數(shù)量積的坐標(biāo)運(yùn)算可得結(jié)論.【詳解】由已知,∵,∴,.故答案為:-1.【點(diǎn)睛】本題考查向量垂直的坐標(biāo)運(yùn)算.掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵.14、40【解析】

先求出的展開式的通項(xiàng),再求出即得解.【詳解】設(shè)的展開式的通項(xiàng)為,令r=3,則,令r=2,則,所以展開式中含x3y3的項(xiàng)為.所以x3y3的系數(shù)為40.故答案為:40【點(diǎn)睛】本題主要考查二項(xiàng)式定理求指定項(xiàng)的系數(shù),意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.15、【解析】

通過平方,將無理不等式化為有理不等式求解即可?!驹斀狻坑傻?,解得,所以解集是。【點(diǎn)睛】本題主要考查無理不等式的解法。16、【解析】

由題,得滿足題目要求的情況有,①有一個(gè)數(shù)字4,另外兩個(gè)數(shù)字從1,2,3里面選和②有兩個(gè)數(shù)字4,另外一個(gè)數(shù)字從1,2,3里面選,由此即可得到本題答案.【詳解】滿足題目要求的情況可以分成2大類:①有一個(gè)數(shù)字4,另外兩個(gè)數(shù)字從1,2,3里面選,一共有種情況;②有兩個(gè)數(shù)字4,另外一個(gè)數(shù)字從1,2,3里面選,一共有種情況,又從中任意摸取3個(gè)小球,有種情況,所以取出的3個(gè)小球中數(shù)字最大的為4的概率.故答案為:【點(diǎn)睛】本題主要考查古典概型與組合的綜合問題,考查學(xué)生分析問題和解決問題的能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)與交點(diǎn)的極坐標(biāo)為,和【解析】

(1)先把曲線化成直角坐標(biāo)方程,再化簡(jiǎn)成極坐標(biāo)方程;(2)聯(lián)立曲線和曲線的方程解得即可.【詳解】(1)曲線的直角坐標(biāo)方程為:,即.的參數(shù)方程化為極坐標(biāo)方程為;(2)聯(lián)立可得:,與交點(diǎn)的極坐標(biāo)為,和.【點(diǎn)睛】本題考查了參數(shù)方程,直角坐標(biāo)方程,極坐標(biāo)方程的互化,也考查了極坐標(biāo)方程的聯(lián)立,屬于基礎(chǔ)題.18、(1);(2)見解析.【解析】

(1)將所求問題轉(zhuǎn)化為在上有解,進(jìn)一步轉(zhuǎn)化為函數(shù)最值問題;(2)將所證不等式轉(zhuǎn)化為,進(jìn)一步轉(zhuǎn)化為,然后再通過構(gòu)造加以證明即可.【詳解】(1),根據(jù)題意,在內(nèi)存在單調(diào)減區(qū)間,則不等式在上有解,由得,設(shè),則,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,所以當(dāng)時(shí),,所以存在,使得成立,所以的取值范圍為。(2)當(dāng)時(shí),,則,從而所證不等式轉(zhuǎn)化為,不妨設(shè),則不等式轉(zhuǎn)化為,即,即,令,則不等式轉(zhuǎn)化為,因?yàn)椋瑒t,從而不等式化為,設(shè),則,所以在上單調(diào)遞增,所以即不等式成立,故原不等式成立.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、利用導(dǎo)數(shù)證明不等式,這里要強(qiáng)調(diào)一點(diǎn),在證明不等式時(shí),通常是構(gòu)造函數(shù),將問題轉(zhuǎn)化為函數(shù)的極值或最值來處理,本題是一道有高度的壓軸解答題.19、(Ⅰ)(為參數(shù));(Ⅱ)【解析】

(Ⅰ)設(shè)點(diǎn),,則,代入化簡(jiǎn)得到答案.(Ⅱ)分別計(jì)算,的極坐標(biāo)方程為,,取代入計(jì)算得到答案.【詳解】(Ⅰ)設(shè)點(diǎn),,,故,故的參數(shù)方程為:(為參數(shù)).(Ⅱ),故,極坐標(biāo)方程為:;,故,極坐標(biāo)方程為:.,故,,故.【點(diǎn)睛】本題考查了參數(shù)方程,極坐標(biāo)方程,弦長,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.20、(1)見解析(2)(文)(理)【解析】

(1)證明:取PD中點(diǎn)G,連結(jié)GF、AG,∵GF為△PDC的中位線,∴GF∥CD且,又AE∥CD且,∴GF∥AE且GF=AE,∴EFGA是平行四邊形,則EF∥AG,又EF不在平面PAD內(nèi),AG在平面PAD內(nèi),∴EF∥面PAD;(2)(文)解:取AD中點(diǎn)O,連結(jié)PO,∵面PAD⊥面ABCD,△PAD為正三角形,∴PO⊥面ABCD,且,又PC為面ABCD斜線,F(xiàn)為PC中點(diǎn),∴F到面ABCD距離,故;(理)連OB交CE于M,可得Rt△EBC≌Rt△OAB,∴∠MEB=∠AOB,則∠MEB+∠MBE=90°,即OM⊥EC.連PM,又由(2)知PO⊥EC,可得EC⊥平面POM,則PM⊥EC,即∠PMO是二面角P-EC-D的平面角,在Rt△EBC中,,∴,∴,即二面角P-EC-D的正切值為.【方法點(diǎn)晴】本題主要考查線面平行的判定定理、二面角的求法、利用等積變換求三棱錐體積,屬于難題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個(gè)定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論