版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆北師大泉州附中高考壓軸卷數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的定義域為,且,當時,.若,則函數(shù)在上的最大值為()A.4 B.6 C.3 D.82.已知斜率為2的直線l過拋物線C:的焦點F,且與拋物線交于A,B兩點,若線段AB的中點M的縱坐標為1,則p=()A.1 B. C.2 D.43.一物體作變速直線運動,其曲線如圖所示,則該物體在間的運動路程為()m.A.1 B. C. D.24.已知為等差數(shù)列,若,,則()A.1 B.2 C.3 D.65.已知函數(shù),若時,恒成立,則實數(shù)的值為()A. B. C. D.6.已知函數(shù)()的最小值為0,則()A. B. C. D.7.近年來,隨著網(wǎng)絡的普及和智能手機的更新?lián)Q代,各種方便的相繼出世,其功能也是五花八門.某大學為了調查在校大學生使用的主要用途,隨機抽取了名大學生進行調查,各主要用途與對應人數(shù)的結果統(tǒng)計如圖所示,現(xiàn)有如下說法:①可以估計使用主要聽音樂的大學生人數(shù)多于主要看社區(qū)、新聞、資訊的大學生人數(shù);②可以估計不足的大學生使用主要玩游戲;③可以估計使用主要找人聊天的大學生超過總數(shù)的.其中正確的個數(shù)為()A. B. C. D.8.下列函數(shù)中,值域為R且為奇函數(shù)的是()A. B. C. D.9.某部隊在一次軍演中要先后執(zhí)行六項不同的任務,要求是:任務A必須排在前三項執(zhí)行,且執(zhí)行任務A之后需立即執(zhí)行任務E,任務B、任務C不能相鄰,則不同的執(zhí)行方案共有()A.36種 B.44種 C.48種 D.54種10.大衍數(shù)列,米源于我國古代文獻《乾坤譜》中對易傳“大衍之數(shù)五十”的推論,主要用于解釋我國傳統(tǒng)文化中的太極衍生原理,數(shù)列中的每一項,都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和.已知該數(shù)列前10項是0,2,4,8,12,18,24,32,40,50,…,則大衍數(shù)列中奇數(shù)項的通項公式為()A. B. C. D.11.如圖所示,三國時代數(shù)學家在《周脾算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一個內(nèi)角為,若向弦圖內(nèi)隨機拋擲200顆米粒(大小忽略不計,取),則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為()A.20 B.27 C.54 D.6412.函數(shù)在上的最大值和最小值分別為()A.,-2 B.,-9 C.-2,-9 D.2,-2二、填空題:本題共4小題,每小題5分,共20分。13.若滿足,則目標函數(shù)的最大值為______.14.如圖,某市一學校位于該市火車站北偏東方向,且,已知是經(jīng)過火車站的兩條互相垂直的筆直公路,CE,DF及圓弧都是學校道路,其中,,以學校為圓心,半徑為的四分之一圓弧分別與相切于點.當?shù)卣顿Y開發(fā)區(qū)域發(fā)展經(jīng)濟,其中分別在公路上,且與圓弧相切,設,的面積為.(1)求關于的函數(shù)解析式;(2)當為何值時,面積為最小,政府投資最低?15.已知函數(shù),若的最小值為,則實數(shù)的取值范圍是_________16.已知單位向量的夾角為,則=_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)證明:函數(shù)在上存在唯一的零點;(2)若函數(shù)在區(qū)間上的最小值為1,求的值.18.(12分)等差數(shù)列的前項和為,已知,.(1)求數(shù)列的通項公式;(2)設數(shù)列{}的前項和為,求使成立的的最小值.19.(12分)如圖,三棱錐中,點,分別為,的中點,且平面平面.求證:平面;若,,求證:平面平面.20.(12分)如圖,在四棱錐中,,,,和均為邊長為的等邊三角形.(1)求證:平面平面;(2)求二面角的余弦值.21.(12分)已知函數(shù)f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立,求實數(shù)x的取值范圍.22.(10分)已知函數(shù).(1)當a=2時,求不等式的解集;(2)設函數(shù).當時,,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)所給函數(shù)解析式滿足的等量關系及指數(shù)冪運算,可得;利用定義可證明函數(shù)的單調性,由賦值法即可求得函數(shù)在上的最大值.【詳解】函數(shù)的定義域為,且,則;任取,且,則,故,令,,則,即,故函數(shù)在上單調遞增,故,令,,故,故函數(shù)在上的最大值為4.故選:A.【點睛】本題考查了指數(shù)冪的運算及化簡,利用定義證明抽象函數(shù)的單調性,賦值法在抽象函數(shù)求值中的應用,屬于中檔題.2、C【解析】
設直線l的方程為x=y(tǒng),與拋物線聯(lián)立利用韋達定理可得p.【詳解】由已知得F(,0),設直線l的方程為x=y(tǒng),并與y2=2px聯(lián)立得y2﹣py﹣p2=0,設A(x1,y1),B(x2,y2),AB的中點C(x0,y0),∴y1+y2=p,又線段AB的中點M的縱坐標為1,則y0(y1+y2)=,所以p=2,故選C.【點睛】本題主要考查了直線與拋物線的相交弦問題,利用韋達定理是解題的關鍵,屬中檔題.3、C【解析】
由圖像用分段函數(shù)表示,該物體在間的運動路程可用定積分表示,計算即得解【詳解】由題中圖像可得,由變速直線運動的路程公式,可得.所以物體在間的運動路程是.故選:C【點睛】本題考查了定積分的實際應用,考查了學生轉化劃歸,數(shù)形結合,數(shù)學運算的能力,屬于中檔題.4、B【解析】
利用等差數(shù)列的通項公式列出方程組,求出首項和公差,由此能求出.【詳解】∵{an}為等差數(shù)列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故選:B.【點睛】本題考查等差數(shù)列通項公式求法,考查等差數(shù)列的性質等基礎知識,考查運算求解能力,是基礎題.5、D【解析】
通過分析函數(shù)與的圖象,得到兩函數(shù)必須有相同的零點,解方程組即得解.【詳解】如圖所示,函數(shù)與的圖象,因為時,恒成立,于是兩函數(shù)必須有相同的零點,所以,解得.故選:D【點睛】本題主要考查函數(shù)的圖象的綜合應用和函數(shù)的零點問題,考查不等式的恒成立問題,意在考查學生對這些知識的理解掌握水平.6、C【解析】
設,計算可得,再結合圖像即可求出答案.【詳解】設,則,則,由于函數(shù)的最小值為0,作出函數(shù)的大致圖像,結合圖像,,得,所以.故選:C【點睛】本題主要考查了分段函數(shù)的圖像與性質,考查轉化思想,考查數(shù)形結合思想,屬于中檔題.7、C【解析】
根據(jù)利用主要聽音樂的人數(shù)和使用主要看社區(qū)、新聞、資訊的人數(shù)作大小比較,可判斷①的正誤;計算使用主要玩游戲的大學生所占的比例,可判斷②的正誤;計算使用主要找人聊天的大學生所占的比例,可判斷③的正誤.綜合得出結論.【詳解】使用主要聽音樂的人數(shù)為,使用主要看社區(qū)、新聞、資訊的人數(shù)為,所以①正確;使用主要玩游戲的人數(shù)為,而調查的總人數(shù)為,,故超過的大學生使用主要玩游戲,所以②錯誤;使用主要找人聊天的大學生人數(shù)為,因為,所以③正確.故選:C.【點睛】本題考查統(tǒng)計中相關命題真假的判斷,計算出相應的頻數(shù)與頻率是關鍵,考查數(shù)據(jù)處理能力,屬于基礎題.8、C【解析】
依次判斷函數(shù)的值域和奇偶性得到答案.【詳解】A.,值域為,非奇非偶函數(shù),排除;B.,值域為,奇函數(shù),排除;C.,值域為,奇函數(shù),滿足;D.,值域為,非奇非偶函數(shù),排除;故選:.【點睛】本題考查了函數(shù)的值域和奇偶性,意在考查學生對于函數(shù)知識的綜合應用.9、B【解析】
分三種情況,任務A排在第一位時,E排在第二位;任務A排在第二位時,E排在第三位;任務A排在第三位時,E排在第四位,結合任務B和C不能相鄰,分別求出三種情況的排列方法,即可得到答案.【詳解】六項不同的任務分別為A、B、C、D、E、F,如果任務A排在第一位時,E排在第二位,剩下四個位置,先排好D、F,再在D、F之間的3個空位中插入B、C,此時共有排列方法:;如果任務A排在第二位時,E排在第三位,則B,C可能分別在A、E的兩側,排列方法有,可能都在A、E的右側,排列方法有;如果任務A排在第三位時,E排在第四位,則B,C分別在A、E的兩側;所以不同的執(zhí)行方案共有種.【點睛】本題考查了排列組合問題,考查了學生的邏輯推理能力,屬于中檔題.10、B【解析】
直接代入檢驗,排除其中三個即可.【詳解】由題意,排除D,,排除A,C.同時B也滿足,,,故選:B.【點睛】本題考查由數(shù)列的項選擇通項公式,解題時可代入檢驗,利用排除法求解.11、B【解析】
設大正方體的邊長為,從而求得小正方體的邊長為,設落在小正方形內(nèi)的米粒數(shù)大約為,利用概率模擬列方程即可求解?!驹斀狻吭O大正方體的邊長為,則小正方體的邊長為,設落在小正方形內(nèi)的米粒數(shù)大約為,則,解得:故選:B【點睛】本題主要考查了概率模擬的應用,考查計算能力,屬于基礎題。12、B【解析】
由函數(shù)解析式中含絕對值,所以去絕對值并畫出函數(shù)圖象,結合圖象即可求得在上的最大值和最小值.【詳解】依題意,,作出函數(shù)的圖象如下所示;由函數(shù)圖像可知,當時,有最大值,當時,有最小值.故選:B.【點睛】本題考查了絕對值函數(shù)圖象的畫法,由函數(shù)圖象求函數(shù)的最值,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】
由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案.【詳解】由約束條件作出可行域如圖,化目標函數(shù)為,由圖可得,當直線過點時,直線在軸上的截距最大,由得即,則有最大值,故答案為.【點睛】本題主要考查線性規(guī)劃中利用可行域求目標函數(shù)的最值,屬簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應的最優(yōu)解對應點(在可行域內(nèi)平移變形后的目標函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.14、(1);(2).【解析】
(1)以點為坐標原點建立如圖所示的平面直角坐標系,則,在中,設,又,故,,進而表示直線的方程,由直線與圓相切構建關系化簡整理得,即可表示OA,OB,最后由三角形面積公式表示面積即可;(2)令,則,由輔助角公式和三角函數(shù)值域可求得t的取值范圍,進而對原面積的函數(shù)用含t的表達式換元,再令進行換元,并構建新的函數(shù),由二次函數(shù)性質即可求得最小值.【詳解】解:(1)以點為坐標原點建立如圖所示的平面直角坐標系,則,在中,設,又,故,.所以直線的方程為,即.因為直線與圓相切,所以.因為點在直線的上方,所以,所以式可化為,解得.所以,.所以面積為.(2)令,則,且,所以,.令,,所以在上單調遞減.所以,當,即時,取得最大值,取最小值.答:當時,面積為最小,政府投資最低.【點睛】本題考查三角函數(shù)的實際應用,應優(yōu)先結合實際建立合適的數(shù)學模型,再按模型求最值,屬于難題.15、【解析】
,可得在時,最小值為,時,要使得最小值為,則對稱軸在1的右邊,且,求解出即滿足最小值為.【詳解】當,,當且僅當時,等號成立.當時,為二次函數(shù),要想在處取最小,則對稱軸要滿足并且,即,解得.【點睛】本題考查分段函數(shù)的最值問題,對每段函數(shù)先進行分類討論,找到每段的最小值,然后再對兩段函數(shù)的最小值進行比較,得到結果,題目較綜合,屬于中檔題.16、【解析】
因為單位向量的夾角為,所以,所以==.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】
(1)求解出導函數(shù),分析導函數(shù)的單調性,再結合零點的存在性定理說明在上存在唯一的零點即可;(2)根據(jù)導函數(shù)零點,判斷出的單調性,從而可確定,利用以及的單調性,可確定出之間的關系,從而的值可求.【詳解】(1)證明:∵,∴.∵在區(qū)間上單調遞增,在區(qū)間上單調遞減,∴函數(shù)在上單調遞增.又,令,,則在上單調遞減,,故.令,則所以函數(shù)在上存在唯一的零點.(2)解:由(1)可知存在唯一的,使得,即(*).函數(shù)在上單調遞增.∴當時,,單調遞減;當時,,單調遞增.∴.由(*)式得.∴,顯然是方程的解.又∵是單調遞減函數(shù),方程有且僅有唯一的解,把代入(*)式,得,∴,即所求實數(shù)的值為.【點睛】本題考查函數(shù)與導數(shù)的綜合應用,其中涉及到判斷函數(shù)在給定區(qū)間上的零點個數(shù)以及根據(jù)函數(shù)的最值求解參數(shù),難度較難.(1)判斷函數(shù)的零點個數(shù)時,可結合函數(shù)的單調性以及零點的存在性定理進行判斷;(2)函數(shù)的“隱零點”問題,可通過“設而不求”的思想進行分析.18、(1);(2)的最小值為19.【解析】
(1)根據(jù)條件列方程組求出首項、公差,即可寫出等差數(shù)列的通項公式;(2)根據(jù)等差數(shù)列前n項和化簡,利用裂項相消法求和,解不等式即可求解.【詳解】(1)等差數(shù)列的公差設為,,,可得,,解得,,則;(2),,前n項和為,即,可得,即,則的最小值為19.【點睛】本題主要考查了等差數(shù)列的通項公式,等差數(shù)列的前n項和,裂項相消法求和,屬于中檔題19、證明見解析;證明見解析.【解析】
利用線面平行的判定定理求證即可;為中點,為中點,可得,,,可知,故為直角三角形,,利用面面垂直的判定定理求證即可.【詳解】解:證明:為中點,為中點,,又平面,平面,平面;證明:為中點,為中點,,又,,則,故為直角三角形,,平面平面,平面平面,,平面,平面,又∵平面,平面平面.【點睛】本題考查線面平行和面面垂直的判定定理的應用,屬于基礎題.20、(1)見證明;(2)【解析】
(1)取的中點,連接,要證平面平面,轉證平面,即證,即可;(2)以為坐標原點,以為軸正方向,建立如圖所示的空間直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 第1單元 古代亞非文明(高頻非選擇題25題)(原卷版)
- 《波蘭歪屋設計》課件
- 《證券市場概述周》課件
- 玩具設計美工工作總結
- 2023-2024年項目管理人員安全培訓考試題帶答案(黃金題型)
- 關于認識實習報告匯編六篇
- 《系統(tǒng)安全評價概述》課件
- 《婦產(chǎn)科學緒論》課件
- 《監(jiān)理工作程序》課件
- 《應用開發(fā)和管理》課件
- 青島市2022-2023學年七年級上學期期末道德與法治試題
- 高空作業(yè)安全免責協(xié)議書范本
- 石油化學智慧樹知到期末考試答案章節(jié)答案2024年中國石油大學(華東)
- 手術后如何防止排尿困難
- 特種設備“日管控、周排查、月調度”表格
- 重點關愛學生幫扶活動記錄表
- 2021年10月自考00850廣告設計基礎試題及答案含解析
- 結構化面試表格
- 地熱能資源的潛力及在能源領域中的應用前景
- 2023版:美國眼科學會青光眼治療指南(全文)
- 家長會課件:小學寒假家長會課件
評論
0/150
提交評論