版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第三篇思想方法篇思想04化歸與轉(zhuǎn)化思想(練)一、單選題1.(2023春·四川南充·高三四川省南充市高坪中學(xué)??奸_(kāi)學(xué)考試)河北省正定縣的須彌塔是中國(guó)建筑寶庫(kù)的珍貴遺產(chǎn),是我國(guó)古建筑之精品,是中國(guó)古代高超的建筑工程技術(shù)和建筑藝術(shù)成就的例證.一名身高1SKIPIF1<0的同學(xué)假期到河北省正定縣旅游,他在A處仰望須彌塔尖,仰角為SKIPIF1<0,他沿直線向塔行走了SKIPIF1<0后仰望須彌塔尖,仰角為SKIPIF1<0,據(jù)此估計(jì)該須彌塔的高度約為(
)(參考數(shù)據(jù):SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】作出圖形,求出角度,利用正弦定理結(jié)合SKIPIF1<0的正弦值,求出答案.【詳解】如圖,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,在SKIPIF1<0中,由正弦定理得SKIPIF1<0,所以SKIPIF1<0,其中SKIPIF1<0,故SKIPIF1<0又SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,又該同學(xué)身高SKIPIF1<0,所以塔高約為SKIPIF1<0SKIPIF1<0.故選:SKIPIF1<0.2.(2022秋·江蘇南京·高三南京航空航天大學(xué)附屬高級(jí)中學(xué)??茧A段練習(xí))已知SKIPIF1<0,SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0”的(
)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】B【分析】利用必要不充分條件判斷即可.【詳解】若SKIPIF1<0,取SKIPIF1<0,SKIPIF1<0,但是SKIPIF1<0無(wú)意義,所以由“SKIPIF1<0”推不出“SKIPIF1<0”,若“SKIPIF1<0”,則SKIPIF1<0,所以可得SKIPIF1<0,所以由“SKIPIF1<0”可推出“SKIPIF1<0“,所以“SKIPIF1<0”是“SKIPIF1<0”的必要不充分條件,故選:B.3.(2023秋·遼寧錦州·高一統(tǒng)考期末)降低室內(nèi)微生物密度的有效方法是定時(shí)給室內(nèi)注入新鮮空氣,即開(kāi)窗通風(fēng)換氣.在某室內(nèi),空氣中微生物密度SKIPIF1<0隨開(kāi)窗通風(fēng)換氣時(shí)間SKIPIF1<0的關(guān)系如圖所示,則下列時(shí)間段內(nèi),空氣中微生物密度變化的平均速度最快的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】連接圖上的點(diǎn),利用直線的斜率與平均變化率的定義判斷即可;【詳解】如圖分別令SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0所對(duì)應(yīng)的點(diǎn)為SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0內(nèi)空氣中微生物密度變化的平均速度最快;故選:B4.(2022秋·貴州·高三校聯(lián)考階段練習(xí))近期隨著疫情的日益嚴(yán)重,社區(qū)的防控壓力日益增大,我校第三黨支部決定成立疫情防控小組投入到社區(qū)的疫情防控當(dāng)中,現(xiàn)有4名男性黨員和2名女性黨員同志自愿報(bào)名,若從這6名黨員同志中隨機(jī)選擇3名黨員組成疫情防控小組,則防控小組中男、女黨員均有的情況有多少種?(
)A.32 B.20 C.16 D.10【答案】C【分析】6人中任選3人,至少有一名是男性,因此只要排除3人都是男性的情形即可得,即用排除法求解.【詳解】6人中任選3人,至少有一名是男性,因此只要排除3人都是男性的情形即可得,方法為SKIPIF1<0.故選:C.5.(2022秋·河北唐山·高三開(kāi)灤第二中學(xué)??计谥校┮阎猄KIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0”的(
)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】A【分析】根據(jù)指數(shù)函數(shù)的單調(diào)性可知前者可以推出后者,舉反例SKIPIF1<0,可知后者無(wú)法推出前者,即可得到答案.【詳解】當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0,根據(jù)指數(shù)函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,若SKIPIF1<0,滿足SKIPIF1<0,不滿足SKIPIF1<0,所以前者可以推出后者,后者無(wú)法推出前者,故“SKIPIF1<0”是“SKIPIF1<0”的充分不必要條件.故選:A.6.(2023·全國(guó)·開(kāi)灤第二中學(xué)??寄M預(yù)測(cè))已知等比數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則實(shí)數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,列方程求出SKIPIF1<0,進(jìn)而可求出SKIPIF1<0,結(jié)合指數(shù)函數(shù)的性質(zhì)求出SKIPIF1<0的最大、小值,列不等式組即可求出SKIPIF1<0的取值范圍【詳解】解:設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,當(dāng)x為正整數(shù)且奇數(shù)時(shí),函數(shù)SKIPIF1<0單調(diào)遞減,當(dāng)x為正整數(shù)且偶數(shù)時(shí),函數(shù)SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0時(shí),SKIPIF1<0取得最大值SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故選:B.7.(2023秋·遼寧錦州·高三統(tǒng)考期末)平行四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0在邊SKIPIF1<0上,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】建立平面直角坐標(biāo)系,設(shè)SKIPIF1<0,把SKIPIF1<0的取值范圍轉(zhuǎn)化為求二次函數(shù)的值域問(wèn)題,即可求得本題答案.【詳解】作SKIPIF1<0,垂足為SKIPIF1<0,以點(diǎn)SKIPIF1<0為原點(diǎn),SKIPIF1<0所在直線為SKIPIF1<0軸,SKIPIF1<0軸建立如下圖的平面直角坐標(biāo)系.因?yàn)镾KIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,在直角SKIPIF1<0中,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因?yàn)槎魏瘮?shù)開(kāi)口向上,對(duì)稱軸為SKIPIF1<0,且SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取最小值SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取最大值SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.故選:C8.(福建省南平市2022-2023學(xué)年高二上學(xué)期期末質(zhì)量檢測(cè)數(shù)學(xué)試題)已知函數(shù)SKIPIF1<0的最小值為-1,過(guò)點(diǎn)SKIPIF1<0的直線中有且只有兩條與函數(shù)SKIPIF1<0的圖象相切,則實(shí)數(shù)b的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】先利用導(dǎo)數(shù)求出函數(shù)的最小值,結(jié)合題意可得SKIPIF1<0,設(shè)過(guò)點(diǎn)SKIPIF1<0的直線與函數(shù)SKIPIF1<0的圖象相切的切點(diǎn)為SKIPIF1<0,利用導(dǎo)數(shù)的幾何意義求出切線方程,根據(jù)切線過(guò)點(diǎn)SKIPIF1<0建立方程,再結(jié)合過(guò)點(diǎn)SKIPIF1<0的直線有兩條與函數(shù)SKIPIF1<0的圖象相切可得SKIPIF1<0,解之即可求解.【詳解】因?yàn)镾KIPIF1<0,則SKIPIF1<0,令SKIPIF1<0可得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0是增函數(shù).當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0是減函數(shù).所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有最小值SKIPIF1<0,所以SKIPIF1<0,設(shè)過(guò)點(diǎn)SKIPIF1<0的直線與函數(shù)SKIPIF1<0的圖象相切的切點(diǎn)為SKIPIF1<0,則切線方程為SKIPIF1<0,又切線過(guò)點(diǎn)SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0.過(guò)點(diǎn)SKIPIF1<0的直線有兩條與函數(shù)SKIPIF1<0的圖象相切,則SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0.故選:SKIPIF1<0.二、多選題9.(2023秋·遼寧丹東·高三統(tǒng)考期末)設(shè)SKIPIF1<0,SKIPIF1<0,若a,b,c互不相等,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0D.SKIPIF1<0【答案】ABD【分析】由SKIPIF1<0,可解得SKIPIF1<0,可判斷A;當(dāng)SKIPIF1<0時(shí),取SKIPIF1<0,可得SKIPIF1<0,不滿足a,b,c互不相等,可判斷B;將SKIPIF1<0看成函數(shù)SKIPIF1<0與SKIPIF1<0圖象的交點(diǎn),可判斷C,D.【詳解】由SKIPIF1<0,可得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故A正確;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,不滿足a,b,c互不相等,所以SKIPIF1<0,故B正確,因?yàn)镾KIPIF1<0,SKIPIF1<0,可將SKIPIF1<0看成函數(shù)SKIPIF1<0與SKIPIF1<0圖象的交點(diǎn)橫坐標(biāo),當(dāng)SKIPIF1<0時(shí),圖象如下圖,可得:SKIPIF1<0,此時(shí)SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),圖象如下圖,可得:SKIPIF1<0,此時(shí)SKIPIF1<0,所以C不正確,D正確;故選:ABD.【點(diǎn)睛】本題關(guān)鍵點(diǎn)是將SKIPIF1<0看成函數(shù)SKIPIF1<0與SKIPIF1<0圖象的交點(diǎn)橫坐標(biāo),作出函數(shù)SKIPIF1<0與SKIPIF1<0圖象,討論SKIPIF1<0的取值即可比較SKIPIF1<0的大小.10.(廣東省肇慶市2022-2023學(xué)年高一上學(xué)期期末數(shù)學(xué)試題)已知函數(shù)SKIPIF1<0的圖象如圖所示,則下列說(shuō)法正確的是(
)A.SKIPIF1<0B.SKIPIF1<0C.函數(shù)SKIPIF1<0是偶函數(shù)D.關(guān)于x的不等式SKIPIF1<0的解集為SKIPIF1<0【答案】ACD【分析】根據(jù)函數(shù)圖象可得函數(shù)圖象的對(duì)稱軸,進(jìn)而求得參數(shù)a的值,判斷A,B;根據(jù)圖象的平移結(jié)合偶函數(shù)的性質(zhì)可判斷C;分段解不等式可得不等式SKIPIF1<0的解集,判斷D.【詳解】由函數(shù)圖像可知SKIPIF1<0為函數(shù)SKIPIF1<0的對(duì)稱軸,即函數(shù)滿足SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,同理當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,綜合可知SKIPIF1<0,A正確;B錯(cuò)誤.將SKIPIF1<0的圖象向左平移1個(gè)單位,即得函數(shù)SKIPIF1<0的圖象,則SKIPIF1<0的圖象關(guān)于y軸對(duì)稱,故SKIPIF1<0為偶函數(shù),C正確;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,綜合可得SKIPIF1<0,即不等式SKIPIF1<0的解集為SKIPIF1<0,D正確,故選:ACD【點(diǎn)睛】方法點(diǎn)睛:解答本題,要注意數(shù)形結(jié)合的思想方法,同時(shí)要結(jié)合函數(shù)圖像的特征,利用相應(yīng)的定義去判斷解答,即可求解.11.(2023春·遼寧本溪·高三校考階段練習(xí))已知點(diǎn)SKIPIF1<0,圓C:SKIPIF1<0,點(diǎn)P是圓C上的一點(diǎn),則下列說(shuō)法正確的是(
)A.若SKIPIF1<0,則SKIPIF1<0B.SKIPIF1<0的最小值為SKIPIF1<0C.設(shè)線段PA的中點(diǎn)為Q,則點(diǎn)Q到直線SKIPIF1<0的距離的取值范圍是SKIPIF1<0D.過(guò)直線SKIPIF1<0上一點(diǎn)T引圓C的兩條切線,切點(diǎn)分別為M,N,則SKIPIF1<0的取值范圍是SKIPIF1<0【答案】AD【分析】由圓的方程,設(shè)圓上一點(diǎn)SKIPIF1<0,判斷A,B,C的正誤,數(shù)形結(jié)合,得SKIPIF1<0,判斷D的正誤.【詳解】設(shè)SKIPIF1<0,對(duì)于A,SKIPIF1<0,故A正確;對(duì)于B,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以當(dāng)SKIPIF1<0,即P點(diǎn)為SKIPIF1<0時(shí),SKIPIF1<0,故B錯(cuò)誤;對(duì)于C,SKIPIF1<0,所以點(diǎn)Q到直線SKIPIF1<0的距離SKIPIF1<0,故C錯(cuò)誤;對(duì)于D,如圖所示,SKIPIF1<0,又CMSKIPIF1<0TM,CNSKIPIF1<0TN,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故D正確.故選:AD.12.(2023秋·廣東·高三校聯(lián)考期末)已知函數(shù)SKIPIF1<0,則過(guò)點(diǎn)SKIPIF1<0恰能作曲線SKIPIF1<0的兩條切線的充分條件可以是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【分析】設(shè)切點(diǎn)坐標(biāo)為SKIPIF1<0,則有SKIPIF1<0,所以問(wèn)題轉(zhuǎn)化為方程SKIPIF1<0恰有兩個(gè)解,令SKIPIF1<0,然后利用導(dǎo)數(shù)求解其零點(diǎn)即可.【詳解】由SKIPIF1<0,得SKIPIF1<0,設(shè)切點(diǎn)為SKIPIF1<0,則切線的斜率為SKIPIF1<0,所以有SKIPIF1<0,整理可得:SKIPIF1<0,由題意可知:此方程有且恰有兩個(gè)解,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,①當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則函數(shù)SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則函數(shù)SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則函數(shù)SKIPIF1<0單調(diào)遞增,所以只要SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0;②當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則函數(shù)SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則函數(shù)SKIPIF1<0單調(diào)遞增,所以只要SKIPIF1<0,即SKIPIF1<0,而SKIPIF1<0;③當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則函數(shù)SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則函數(shù)SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則函數(shù)SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以只要SKIPIF1<0或SKIPIF1<0,由SKIPIF1<0可得:SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0;④當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以函數(shù)至多有一個(gè)零點(diǎn),不合題意;綜上:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0或SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0或SKIPIF1<0,所以選項(xiàng)SKIPIF1<0正確,SKIPIF1<0正確,SKIPIF1<0錯(cuò)誤,SKIPIF1<0正確,故選:SKIPIF1<0.【點(diǎn)睛】導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學(xué)中重要的知識(shí)點(diǎn),對(duì)導(dǎo)數(shù)的應(yīng)用的考查主要從以下幾個(gè)角度進(jìn)行:(1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù).(3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問(wèn)題.(4)考查數(shù)形結(jié)合思想的應(yīng)用.三、填空題13.(2023春·四川成都·高三校聯(lián)考期末)在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0所在平面內(nèi)的動(dòng)點(diǎn),且SKIPIF1<0,則SKIPIF1<0的取值范圍為_(kāi)_____.【答案】SKIPIF1<0【分析】由題意畫出圖形,建立平面直角坐標(biāo)系,可得SKIPIF1<0與SKIPIF1<0的坐標(biāo),設(shè)SKIPIF1<0,寫出SKIPIF1<0,再由三角函數(shù)求最值即可.【詳解】由題意不妨設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0所在平面內(nèi)的動(dòng)點(diǎn),且SKIPIF1<0,SKIPIF1<0設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,由于SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0的取值范圍是SKIPIF1<0故答案為:SKIPIF1<014.(2023·河南平頂山·葉縣高級(jí)中學(xué)校聯(lián)考模擬預(yù)測(cè))SKIPIF1<0的最小值為_(kāi)_____.【答案】SKIPIF1<0【分析】由數(shù)形結(jié)合,轉(zhuǎn)為求拋物線SKIPIF1<0上動(dòng)點(diǎn)SKIPIF1<0到SKIPIF1<0及準(zhǔn)線距離和的最值.【詳解】易知?jiǎng)狱c(diǎn)SKIPIF1<0的軌跡為拋物線SKIPIF1<0,C的焦點(diǎn)為SKIPIF1<0,設(shè)P到C的準(zhǔn)線的距離為d,SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,故SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】方法點(diǎn)睛:平方和的形式可看作兩點(diǎn)距離公式,再根據(jù)點(diǎn)的坐標(biāo)形式判斷點(diǎn)所在的曲線,將問(wèn)題轉(zhuǎn)化為幾何問(wèn)題求最值.15.(湖南省株洲市2023屆高三下學(xué)期一模數(shù)學(xué)試題)已知橢圓SKIPIF1<0的左右焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,過(guò)SKIPIF1<0的直線交橢圓C于P,Q兩點(diǎn),若SKIPIF1<0,且SKIPIF1<0,則橢圓C的離心率為_(kāi)_________.【答案】SKIPIF1<0【分析】根據(jù)橢圓的定義,線段比例關(guān)系和余弦定理即可求解.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,在三角形SKIPIF1<0中,SKIPIF1<0,在三角形SKIPIF1<0中,SKIPIF1<0,以上兩式相等整理得SKIPIF1<0,故SKIPIF1<0或SKIPIF1<0(舍去),故SKIPIF1<0,故答案為:SKIPIF1<0.16.(2023·河南·高三信陽(yáng)高中校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0的圖象恒過(guò)定點(diǎn)A,圓SKIPIF1<0上兩點(diǎn)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為_(kāi)_____.【答案】SKIPIF1<0【分析】求出定點(diǎn)SKIPIF1<0的坐標(biāo),由條件可得點(diǎn)SKIPIF1<0三點(diǎn)共線,結(jié)合點(diǎn)到直線的距離公式求SKIPIF1<0的最小值.【詳解】因?yàn)镾KIPIF1<0時(shí),SKIPIF1<0,所以函數(shù)SKIPIF1<0的圖象過(guò)定點(diǎn)SKIPIF1<0,因?yàn)镾KIPIF1<0,所以點(diǎn)SKIPIF1<0三點(diǎn)共線,SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0為圓SKIPIF1<0上兩點(diǎn),所以點(diǎn)SKIPIF1<0為過(guò)點(diǎn)SKIPIF1<0的直線與圓SKIPIF1<0的兩個(gè)交點(diǎn),設(shè)線段SKIPIF1<0的中點(diǎn)為SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0表示點(diǎn)SKIPIF1<0,SKIPIF1<0到直線SKIPIF1<0的距離和,SKIPIF1<0表示表示點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離,分別過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0與直線SKIPIF1<0垂直,垂足為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,直線SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,化簡(jiǎn)可得SKIPIF1<0,即點(diǎn)SKIPIF1<0在圓SKIPIF1<0上,所以點(diǎn)SKIPIF1<0的軌跡為以SKIPIF1<0為圓心,半徑為SKIPIF1<0的圓,所以點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離的最小值為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故答案為:SKIPIF1<0.四、解答題17.(2023·河南·高三信陽(yáng)高中校聯(lián)考階段練習(xí))已知SKIPIF1<0的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若SKIPIF1<0.(1)求角A的大小;(2)若SKIPIF1<0,D為BC的中點(diǎn),求線段AD長(zhǎng)度的最大值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)利用正弦定理求得正確答案.(2)利用圓的幾何性質(zhì)求得SKIPIF1<0的最大值.【詳解】(1)依題意,SKIPIF1<0,由正弦定理得SKIPIF1<0,由于SKIPIF1<0是三角形的內(nèi)角,所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0為銳角,所以SKIPIF1<0.(2)設(shè)三角形SKIPIF1<0外接圓的半徑為SKIPIF1<0,圓心為SKIPIF1<0,則SKIPIF1<0,由于SKIPIF1<0,所以SKIPIF1<0在三角形SKIPIF1<0外接圓上運(yùn)動(dòng),且只在優(yōu)弧SKIPIF1<0(不包括端點(diǎn))上運(yùn)動(dòng),如圖所示,則SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0三點(diǎn)共線時(shí),SKIPIF1<0最大,所以SKIPIF1<0長(zhǎng)度的最大值是SKIPIF1<0.18.(2023·重慶渝中·高三重慶巴蜀中學(xué)校考階段練習(xí))已知SKIPIF1<0為首項(xiàng)SKIPIF1<0的等比數(shù)列,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列;又SKIPIF1<0為首項(xiàng)SKIPIF1<0的單調(diào)遞增的等差數(shù)列,SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列.(1)分別求數(shù)列SKIPIF1<0,SKIPIF1<0的通項(xiàng)公式;(2)令SKIPIF1<0,數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,求證:SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0(2)證明見(jiàn)解析【分析】(1)由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列求出公比可得SKIPIF1<0的通項(xiàng)公式,由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列求出公差可得SKIPIF1<0的通項(xiàng)公式;(2)利用錯(cuò)位相減可得SKIPIF1<0可得答案.【詳解】(1)設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0數(shù)列SKIPIF1<0的公差為SKIPIF1<0由題知:SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0(舍)或SKIPIF1<0,所以SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,①SKIPIF1<0,②由①SKIPIF1<0②知:SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0.19.(2023·山西忻州·統(tǒng)考模擬預(yù)測(cè))在SKIPIF1<0中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,且SKIPIF1<0.(1)求角A的大?。?2)若SKIPIF1<0,且SKIPIF1<0的面積是SKIPIF1<0,求AD的最小值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)根據(jù)三角恒等變換化簡(jiǎn)即可求得SKIPIF1<0;(2)由三角形的面積可得SKIPIF1<0,然后由向量的運(yùn)算可得SKIPIF1<0,再結(jié)合基本不等式即可求得最小值.【詳解】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0.(2)因?yàn)椤鰽BC的面積是SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立,所以SKIPIF1<0,即當(dāng)SKIPIF1<0時(shí),AD取得最小值SKIPIF1<0.20.(2023·廣東汕頭·統(tǒng)考一模)如圖,在多面體SKIPIF1<0中,四邊形SKIPIF1<0與SKIPIF1<0均為直角梯形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)已知點(diǎn)SKIPIF1<0為SKIPIF1<0上一點(diǎn),且SKIPIF1<0,求證:SKIPIF1<0與平面SKIPIF1<0不平行;(2)已知直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為SKIPIF1<0,求該多面體SKIPIF1<0的體積.【答案】(1)證明見(jiàn)解析(2)SKIPIF1<0【分析】(1)建立空間直角坐標(biāo)系,求出平面SKIPIF1<0的法向量及直線SKIPIF1<0的方向向量,即可證明;(2)設(shè)SKIPIF1<0且SKIPIF1<0,利用空間向量法求出表示出線面角的正弦值,即可求出參數(shù)SKIPIF1<0的值,再根據(jù)錐體的體積公式計(jì)算可得.【詳解】(1)證明:因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0、SKIPIF1<0,又SKIPIF1<0,如圖建立空間直角坐標(biāo)系,則SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,且不存在SKIPIF1<0使得SKIPIF1<0,即SKIPIF1<0與SKIPIF1<0不共線,所以SKIPIF1<0與平面SKIPIF1<0不平行且不垂直.(2)解:設(shè)SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為SKIPIF1<0,SKIPIF1<0SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),因?yàn)镾KIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即多面體SKIPIF1<0的體積為SKIPIF1<0.21.(2023春·河南安陽(yáng)·高三安陽(yáng)一中校聯(lián)考階段練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0.(1)設(shè)SKIPIF1<0,證明:SKIPIF1<0是等比數(shù)列;(2)設(shè)數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,求使得不等式SKIPIF1<0成立的n的最小值.【答案】(1)證明見(jiàn)解析(2)20【分析】(1)由已知條件,用SKIPIF1<0表示出SKIPIF1<0,得出SKIPIF1<0,再用SKIPIF1<0表示出SKIPIF1<0,得出SKIPIF1<0,聯(lián)立得出SKIPIF1<0,通過(guò)構(gòu)造得出SKIPIF1<0,檢驗(yàn)SKIPIF1<0,即可得出證得結(jié)論;(2)由(1)的結(jié)論表示出SKIPIF1<0,SKIPIF1<0和SKIPIF1<0,證出SKIPIF1<0在SKIPIF1<0是一個(gè)增數(shù)列,通過(guò)計(jì)算即可得出答案.【詳解】(1)證明:∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴數(shù)列SKIPIF1<0是以2為首項(xiàng),2為公比的等比數(shù)列.(2)由(1)可知數(shù)列SKIPIF1<0是以2為首項(xiàng),2為公比的等比數(shù)列,SKIPIF
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版電力工程設(shè)計(jì)咨詢合同2篇
- 二零二五年度高新技術(shù)企業(yè)承包商擔(dān)保合同3篇
- 二零二五版戶外用品促銷員活動(dòng)策劃合同2篇
- 二零二五年度酒店前臺(tái)正規(guī)雇傭合同范本(含勞動(dòng)合同變更及續(xù)簽規(guī)則)3篇
- 二零二五版港口安全評(píng)價(jià)與安全管理合同3篇
- 二零二五版環(huán)保工程保險(xiǎn)合同3篇
- 二零二五版外資企業(yè)往來(lái)借款稅務(wù)籌劃合同3篇
- 二零二五年財(cái)務(wù)顧問(wèn)企業(yè)財(cái)務(wù)管理咨詢合同3篇
- 二零二五版智能家居產(chǎn)品銷售安裝合同2篇
- 二零二五年度鋼筋行業(yè)購(gòu)銷合同規(guī)范范本5篇
- 不同茶葉的沖泡方法
- 光伏發(fā)電并網(wǎng)申辦具體流程
- 基本藥物制度政策培訓(xùn)課件
- 2025年中國(guó)華能集團(tuán)限公司校園招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 建筑勞務(wù)專業(yè)分包合同范本(2025年)
- GB/T 45002-2024水泥膠砂保水率測(cè)定方法
- 廣東省廣州海珠區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期期末數(shù)學(xué)試卷(含答案)
- 飛行原理(第二版) 課件 第10章 高速空氣動(dòng)力學(xué)基礎(chǔ)
- 廣西《乳腺X射線數(shù)字化體層攝影診療技術(shù)操作規(guī)范》
- 山西省2024年中考道德與法治真題試卷(含答案)
- 五年(2020-2024)高考地理真題分類匯編(全國(guó)版)專題12區(qū)域發(fā)展解析版
評(píng)論
0/150
提交評(píng)論