




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第三篇思想方法篇思想01函數(shù)與方程思想(練)一、單選題1.(2023秋·云南楚雄·高三統(tǒng)考期末)已知隨機(jī)變量SKIPIF1<0(i=1,2)的分布列如表所示:SKIPIF1<00SKIPIF1<0SKIPIF1<0pSKIPIF1<0SKIPIF1<0SKIPIF1<0其中SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0,則(
)A.SKIPIF1<0,SKIPIF1<0B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0D.SKIPIF1<0,SKIPIF1<0【答案】A【分析】求出期望SKIPIF1<0,得出SKIPIF1<0;根據(jù)方差公式求出方差SKIPIF1<0,結(jié)合SKIPIF1<0,比較SKIPIF1<0的大小關(guān)系.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0;SKIPIF1<0SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.故選:A.2.(2022春·上海閔行·高三閔行中學(xué)??奸_學(xué)考試)設(shè)SKIPIF1<0、SKIPIF1<0為單位向量,非零向量SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0、SKIPIF1<0的夾角為SKIPIF1<0,則SKIPIF1<0的最大值等于(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.1【答案】B【分析】由已知可得SKIPIF1<0.則當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,根據(jù)二次函數(shù)的性質(zhì),即可得出答案.【詳解】SKIPIF1<0SKIPIF1<0SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的值為0,當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有最小值SKIPIF1<0,此時(shí)SKIPIF1<0有最大值為SKIPIF1<0.故選:B.3.(2023·陜西咸陽·??家荒#┤鐖D,SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),將SKIPIF1<0沿SKIPIF1<0折疊成三棱錐SKIPIF1<0,則該棱錐體積最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)題意易得SKIPIF1<0平面SKIPIF1<0,進(jìn)而得三棱錐SKIPIF1<0的體積為SKIPIF1<0即可得答案.【詳解】解:因?yàn)樵赟KIPIF1<0中,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,SKIPIF1<0,所以,在折疊成的三棱錐SKIPIF1<0中,SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,所以,三棱錐SKIPIF1<0的體積為SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,所以,該棱錐體積最大值為SKIPIF1<0故選:B4.(2023·貴州畢節(jié)·統(tǒng)考一模)給出下列命題:①函數(shù)SKIPIF1<0恰有兩個(gè)零點(diǎn);②若函數(shù)SKIPIF1<0在SKIPIF1<0上的最小值為4,則SKIPIF1<0;③若函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0;④若關(guān)于SKIPIF1<0的方程SKIPIF1<0有解,則實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.其中正確的是(
)A.①③ B.②④ C.③④ D.②③【答案】D【分析】①利用圖象,轉(zhuǎn)化為函數(shù)交點(diǎn)問題,即可判斷;②利用基本不等式,即可求解;③結(jié)合條件,找到規(guī)律,即可求解;④參變分離后,轉(zhuǎn)化為求函數(shù)的值域,即可求解.【詳解】①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有2個(gè)零點(diǎn),2和4,根據(jù)SKIPIF1<0和SKIPIF1<0可知,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0有1個(gè)零點(diǎn),所以函數(shù)SKIPIF1<0有3個(gè)零點(diǎn),故①錯(cuò)誤;②SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,故②正確;③SKIPIF1<0①,SKIPIF1<0,②且因?yàn)镾KIPIF1<0,則SKIPIF1<0,SKIPIF1<0,…SKIPIF1<0,所以①+②SKIPIF1<0,所以SKIPIF1<0,故③正確;④若關(guān)于SKIPIF1<0的方程SKIPIF1<0有解,則SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,故④錯(cuò)誤.故選:D5.(2023·全國·模擬預(yù)測)已知橢圓SKIPIF1<0的左頂點(diǎn)為A,右焦點(diǎn)為F,M是橢圓上任意一點(diǎn),則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】解法一:由題意可得,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0.表示出SKIPIF1<0,然后根據(jù)橢圓的范圍即可求出范圍;解法二:由題意可得,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,取線段AF的中點(diǎn)SKIPIF1<0,可推得SKIPIF1<0,然后根據(jù)橢圓的范圍即可求出范圍.【詳解】解法一:由題意知SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0.則SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.解法二:由題意知SKIPIF1<0,SKIPIF1<0.設(shè)SKIPIF1<0,取線段AF的中點(diǎn)N,則SKIPIF1<0,連接MN.則SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:D.6.(2022·北京·統(tǒng)考模擬預(yù)測)平面向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0夾角的正弦值的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,根據(jù)均值不等式計(jì)算最值,再利用同角三角函數(shù)關(guān)系得到答案.【詳解】如圖所示:設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,故SKIPIF1<0,當(dāng)SKIPIF1<0最小時(shí),SKIPIF1<0最大,故SKIPIF1<0與SKIPIF1<0夾角的正弦值的最大值為SKIPIF1<0.故選:B7.(2023春·河南·高三河南省淮陽中學(xué)校聯(lián)考開學(xué)考試)已知直線SKIPIF1<0與圓SKIPIF1<0相切,若函數(shù)SKIPIF1<0,滿足SKIPIF1<0,對(duì)于任意的SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)題意,由直線與圓相切可得SKIPIF1<0,從而可得SKIPIF1<0為奇函數(shù)且在SKIPIF1<0上為單調(diào)遞增函數(shù),再將不等式化簡,結(jié)合基本不等式即可得到結(jié)果.【詳解】由圓SKIPIF1<0可得圓心SKIPIF1<0,半徑為SKIPIF1<0,直線與圓相切,則SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0為奇函數(shù).且SKIPIF1<0在SKIPIF1<0上為單調(diào)遞增函數(shù),對(duì)于任意的SKIPIF1<0,有SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào)),可得SKIPIF1<0,所以SKIPIF1<0.故選:B8.(2023·陜西西安·統(tǒng)考一模)設(shè)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.則下列結(jié)論正確的個(gè)數(shù)是(
)①SKIPIF1<0;②若對(duì)任意SKIPIF1<0,都有SKIPIF1<0,則SKIPIF1<0的取值范圍是SKIPIF1<0;③若方程SKIPIF1<0恰有3個(gè)實(shí)數(shù)根,則SKIPIF1<0的取值范圍是SKIPIF1<0;④函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值為SKIPIF1<0,若SKIPIF1<0,使得SKIPIF1<0成立,則SKIPIF1<0.A.1 B.2 C.3 D.4【答案】B【分析】由題意推出函數(shù)的解析式,作出函數(shù)圖象,利用解析式可判斷①;解方程,結(jié)合函數(shù)圖象可判斷②;舉反例取特殊值SKIPIF1<0,可判斷③;根據(jù)函數(shù)解析式求得最值,可得SKIPIF1<0表達(dá)式,分離參數(shù),將SKIPIF1<0,使得SKIPIF1<0成立轉(zhuǎn)化為數(shù)列的單調(diào)性問題,可判斷④.【詳解】函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,滿足SKIPIF1<0,即SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0,依次類推,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0,由此可作出函數(shù)SKIPIF1<0的圖象如圖:對(duì)于①,SKIPIF1<0,此時(shí)SKIPIF1<0,故SKIPIF1<0SKIPIF1<0,①正確;對(duì)于②,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;結(jié)合①可知當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;故當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,故對(duì)任意SKIPIF1<0,都有SKIPIF1<0,則SKIPIF1<0的取值范圍是SKIPIF1<0,正確;對(duì)于③,取SKIPIF1<0,則直線SKIPIF1<0,過點(diǎn)SKIPIF1<0,結(jié)合圖象可知SKIPIF1<0恰有3個(gè)交點(diǎn),即SKIPIF1<0恰有3個(gè)實(shí)數(shù)根,即說明SKIPIF1<0符合題意,則③錯(cuò)誤;對(duì)于④,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,其最大值為SKIPIF1<0,若SKIPIF1<0,使得SKIPIF1<0成立,即SKIPIF1<0,即需SKIPIF1<0;記SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0遞減,又SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0的最大值為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,故④錯(cuò)誤,綜合可知,結(jié)論正確的個(gè)數(shù)是2個(gè),故選:B【點(diǎn)睛】難點(diǎn)點(diǎn)睛:本題綜合考查了函數(shù)的性質(zhì)以及數(shù)列的單調(diào)性等,綜合性較強(qiáng),解答的難點(diǎn)在于要明確函數(shù)的性質(zhì),明確函數(shù)的解析式,從而作出函數(shù)圖象,數(shù)形結(jié)合,解決問題.二、多選題9.(2023·全國·模擬預(yù)測)已知拋物線SKIPIF1<0的焦點(diǎn)為F,點(diǎn)SKIPIF1<0在C上,P為C上的一個(gè)動(dòng)點(diǎn),則(
)A.C的準(zhǔn)線方程為SKIPIF1<0 B.若SKIPIF1<0,則SKIPIF1<0的最小值為SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0的周長的最小值為11 D.在x軸上存在點(diǎn)E,使得SKIPIF1<0為鈍角【答案】BC【分析】根據(jù)題意求出SKIPIF1<0,即可求出準(zhǔn)線,即可判斷A;設(shè)點(diǎn)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,根據(jù)兩點(diǎn)的距離公式結(jié)合二次函數(shù)的性質(zhì)即可判斷B;過點(diǎn)P作SKIPIF1<0垂直于C的準(zhǔn)線,垂足為N,連接MN,再結(jié)合圖象,即可求得SKIPIF1<0的周長的最小值,即可判斷C;設(shè)SKIPIF1<0,再判斷SKIPIF1<0是否有解即可判斷D.【詳解】A選項(xiàng):因?yàn)辄c(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,所以SKIPIF1<0,解得SKIPIF1<0,所以拋物線C的方程為SKIPIF1<0,所以C的準(zhǔn)線方程為SKIPIF1<0,故A錯(cuò)誤;B選項(xiàng):設(shè)點(diǎn)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,所以SKIPIF1<0,故B正確;C選項(xiàng):過點(diǎn)P作SKIPIF1<0垂直于C的準(zhǔn)線,垂足為N,連接MN,則SKIPIF1<0,易知SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的周長為SKIPIF1<0,當(dāng)且僅當(dāng)M,P,N三點(diǎn)共線時(shí)等號(hào)成立,所以SKIPIF1<0的周長的最小值為11,故C正確;D選項(xiàng):設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因?yàn)辄c(diǎn)SKIPIF1<0在C上,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0不可能為鈍角,故D錯(cuò)誤.故選:BC.10.(2023·湖南·模擬預(yù)測)已知SKIPIF1<0,則下列結(jié)論正確的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ACD【分析】由SKIPIF1<0可得SKIPIF1<0,進(jìn)而可借助導(dǎo)數(shù)、指數(shù)函數(shù)的單調(diào)性及不等式的基本性質(zhì)對(duì)選項(xiàng)逐一進(jìn)行分析.【詳解】SKIPIF1<0可得SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0為遞減函數(shù),故SKIPIF1<0,故A正確;取SKIPIF1<0,則SKIPIF1<0,故B錯(cuò)誤;令SKIPIF1<0SKIPIF1<0時(shí),SKIPIF1<0恒成立,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0時(shí),有SKIPIF1<0,故SKIPIF1<0,故C正確;SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0則SKIPIF1<0,故SKIPIF1<0,故D正確;故選:ACD.11.(2023·福建泉州·高三統(tǒng)考階段練習(xí))已知拋物線SKIPIF1<0的焦點(diǎn)為F,過點(diǎn)F的直線l與C交于M,N兩點(diǎn),P為SKIPIF1<0的中點(diǎn),則下列說法正確的是(
)A.SKIPIF1<0的最小值為4 B.SKIPIF1<0的最大值為4C.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0 D.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0【答案】AD【分析】考慮直線的斜率不存在時(shí),可得SKIPIF1<0,當(dāng)直線的斜率存在時(shí),假設(shè)直線的方程為SKIPIF1<0,代入拋物線可得SKIPIF1<0,利用拋物線的定義可得SKIPIF1<0,然后結(jié)合每個(gè)選項(xiàng)進(jìn)行求解判斷即可【詳解】由拋物線SKIPIF1<0可得焦點(diǎn)SKIPIF1<0,準(zhǔn)線為SKIPIF1<0,對(duì)于A,當(dāng)直線l的斜率不存在時(shí),方程為SKIPIF1<0,代入拋物線可得SKIPIF1<0所以此時(shí)SKIPIF1<0;當(dāng)直線l的斜率存在時(shí),假設(shè)直線的方程為SKIPIF1<0,設(shè)SKIPIF1<0將直線方程代入拋物線可得SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,綜上所述,SKIPIF1<0的最小值為4,故A正確;對(duì)于B,當(dāng)直線l的斜率存在時(shí),SKIPIF1<0,故B錯(cuò)誤;對(duì)于C,因?yàn)镻為SKIPIF1<0的中點(diǎn),SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,將SKIPIF1<0代入可得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0易得不滿足題意;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,故C錯(cuò)誤;對(duì)于D,由SKIPIF1<0易得斜率存在,由P為SKIPIF1<0的中點(diǎn)可得SKIPIF1<0即SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,故D正確;故選:AD【點(diǎn)睛】方法點(diǎn)睛:利用韋達(dá)定理法解決直線與圓錐曲線相交問題的基本步驟如下:(1)設(shè)直線方程,設(shè)交點(diǎn)坐標(biāo)為SKIPIF1<0;(2)聯(lián)立直線與圓錐曲線的方程,得到關(guān)于SKIPIF1<0(或SKIPIF1<0)的一元二次方程,必要時(shí)計(jì)算SKIPIF1<0;(3)列出韋達(dá)定理;(4)將所求問題或題中的關(guān)系轉(zhuǎn)化為SKIPIF1<0、SKIPIF1<0(或SKIPIF1<0、SKIPIF1<0)的形式;(5)代入韋達(dá)定理求解.12.(2023·吉林·統(tǒng)考二模)如圖,正四棱柱SKIPIF1<0中,SKIPIF1<0,動(dòng)點(diǎn)P滿足SKIPIF1<0,且SKIPIF1<0.則下列說法正確的是(
)A.當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0平面SKIPIF1<0B.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最小值為SKIPIF1<0C.若直線SKIPIF1<0與SKIPIF1<0所成角為SKIPIF1<0,則動(dòng)點(diǎn)P的軌跡長為SKIPIF1<0D.當(dāng)SKIPIF1<0時(shí),三棱錐SKIPIF1<0外接球半徑的取值范圍是SKIPIF1<0【答案】ABC【分析】當(dāng)SKIPIF1<0時(shí),由平面向量線性運(yùn)算法則可知點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,根據(jù)正四棱柱特征利用線面垂直判定定理即可證明直線SKIPIF1<0平面SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),由共線定理可得點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,根據(jù)對(duì)稱性將SKIPIF1<0的最值轉(zhuǎn)化成平面幾何問題,即可求得最小值;若直線SKIPIF1<0與SKIPIF1<0所成角為SKIPIF1<0,可知點(diǎn)SKIPIF1<0的軌跡是以SKIPIF1<0為圓心,半徑為SKIPIF1<0的半圓弧,即可計(jì)算出其軌跡長度;當(dāng)SKIPIF1<0時(shí),取SKIPIF1<0的中點(diǎn)為SKIPIF1<0,由共線定理可知SKIPIF1<0三點(diǎn)共線,幾何法找出球心位置寫出半徑的表達(dá)式,利用函數(shù)單調(diào)性求其取值范圍即可得出結(jié)果.【詳解】對(duì)于A,取SKIPIF1<0相交于點(diǎn)SKIPIF1<0,SKIPIF1<0的中點(diǎn)為SKIPIF1<0,如下圖所示:當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0,SKIPIF1<0,由平面向量線性運(yùn)算法則可知,點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,由正四棱柱SKIPIF1<0可得SKIPIF1<0,且SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,且SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0;又因?yàn)槠矫鍿KIPIF1<0與平面SKIPIF1<0是同一平面,所以SKIPIF1<0平面SKIPIF1<0,即A正確;對(duì)于B,當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0利用共線定理可得,SKIPIF1<0三點(diǎn)共線,即點(diǎn)SKIPIF1<0在線段SKIPIF1<0上;由對(duì)稱性可知,線段SKIPIF1<0上的點(diǎn)到SKIPIF1<0兩點(diǎn)之間的距離相等,所以SKIPIF1<0;取平面SKIPIF1<0進(jìn)行平面距離分析,如下圖所示:所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0三點(diǎn)共線時(shí),等號(hào)成立,此時(shí)點(diǎn)SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),即SKIPIF1<0的最小值為SKIPIF1<0,故B正確;對(duì)于C,由圖可知,SKIPIF1<0與SKIPIF1<0所成角都為SKIPIF1<0,由SKIPIF1<0可知,點(diǎn)SKIPIF1<0在平面SKIPIF1<0內(nèi),若直線SKIPIF1<0與SKIPIF1<0所成角為SKIPIF1<0,在線段SKIPIF1<0上取點(diǎn)SKIPIF1<0,使SKIPIF1<0,則直線SKIPIF1<0與SKIPIF1<0所成角為SKIPIF1<0;則點(diǎn)SKIPIF1<0的軌跡是以SKIPIF1<0為圓心,半徑為SKIPIF1<0,且在平面SKIPIF1<0內(nèi)的半圓弧SKIPIF1<0,如下圖中細(xì)虛線所示:所以動(dòng)點(diǎn)P的軌跡長為SKIPIF1<0,故C正確;對(duì)于D,當(dāng)SKIPIF1<0時(shí),取SKIPIF1<0的中點(diǎn)為SKIPIF1<0,即SKIPIF1<0;由SKIPIF1<0可知,SKIPIF1<0三點(diǎn)共線,即點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,如下圖所示:易知三棱錐SKIPIF1<0外接球球心在直線SKIPIF1<0上,設(shè)球心為SKIPIF1<0,SKIPIF1<0;作SKIPIF1<0于點(diǎn)SKIPIF1<0,設(shè)SKIPIF1<0,易知SKIPIF1<0,由相似比可得SKIPIF1<0,設(shè)外接球半徑為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0;所以SKIPIF1<0,易知當(dāng)SKIPIF1<0時(shí),半徑最小為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),半徑最大為SKIPIF1<0;又SKIPIF1<0,所以半徑的取值范圍是SKIPIF1<0,即D錯(cuò)誤.故選:ABC【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題關(guān)鍵在于根據(jù)向量線性運(yùn)算法則和共線定理的應(yīng)用,確定點(diǎn)SKIPIF1<0的位置,再根據(jù)幾何體特征利用對(duì)稱性即可求得距離之和得最小值,利用幾何法即可求得外接球球心和半徑的取值范圍.三、填空題13.(2023·全國·校聯(lián)考模擬預(yù)測)已知實(shí)數(shù)a,b,m,n滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為________.【答案】SKIPIF1<0##SKIPIF1<0【分析】根據(jù)實(shí)數(shù)滿足的表達(dá)式,將表達(dá)式轉(zhuǎn)化成直線和拋物線形式,求出解拋物線上到直線距離最近的點(diǎn),即可求得SKIPIF1<0的最小值.【詳解】由題意知,SKIPIF1<0是直線l:SKIPIF1<0上的點(diǎn),SKIPIF1<0是拋物線SKIPIF1<0上的點(diǎn),SKIPIF1<0的幾何意義是拋物線C上的點(diǎn)到直線l上的點(diǎn)的距離的平方.設(shè)SKIPIF1<0與拋物線相切,切點(diǎn)為SKIPIF1<0則SKIPIF1<0,即SKIPIF1<0,所以直線與C切于點(diǎn)SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<014.(2023·吉林·統(tǒng)考一模)若P,Q分別是拋物線SKIPIF1<0與圓SKIPIF1<0上的點(diǎn),則SKIPIF1<0的最小值為________.【答案】SKIPIF1<0##SKIPIF1<0【分析】設(shè)點(diǎn)SKIPIF1<0,圓心SKIPIF1<0,SKIPIF1<0的最小值即為SKIPIF1<0的最小值減去圓的半徑,求出SKIPIF1<0的最小值即可得解.【詳解】依題可設(shè)SKIPIF1<0,圓心SKIPIF1<0,根據(jù)圓外一點(diǎn)到圓上一點(diǎn)的最值求法可知,SKIPIF1<0的最小值即為SKIPIF1<0的最小值減去半徑.因?yàn)镾KIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,由于SKIPIF1<0恒成立,所以函數(shù)SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.15.(2023·湖北武漢·統(tǒng)考模擬預(yù)測)設(shè)F為雙曲線SKIPIF1<0的右焦點(diǎn),A,B分別為雙曲線E的左右頂點(diǎn),點(diǎn)P為雙曲線E上異于A,B的動(dòng)點(diǎn),直線l:x=t使得過F作直線AP的垂線交直線l于點(diǎn)Q時(shí)總有B,P,Q三點(diǎn)共線,則SKIPIF1<0的最大值為____________.【答案】SKIPIF1<0##1.25【分析】設(shè)出直線方程,與雙曲線的方程聯(lián)立,韋達(dá)定理表示出A與P的關(guān)系,根據(jù)三點(diǎn)B,P,Q共線,求得Q點(diǎn)坐標(biāo)的橫坐標(biāo)表示出t,然后運(yùn)用設(shè)參數(shù)m法化簡SKIPIF1<0,最后根據(jù)二次函數(shù)的性質(zhì)求出最大值.【詳解】設(shè)SKIPIF1<0,SKIPIF1<0,聯(lián)立SKIPIF1<0整理得:SKIPIF1<0;所以SKIPIF1<0,得到SKIPIF1<0,所以SKIPIF1<0;過F作直線PA的垂線SKIPIF1<0與直線SKIPIF1<0交于Q,因?yàn)锽,Q,P三點(diǎn)共線,所以Q是直線SKIPIF1<0與BP的交點(diǎn),Q是SKIPIF1<0與SKIPIF1<0的交點(diǎn)所以得SKIPIF1<0,所以SKIPIF1<0設(shè)SKIPIF1<0則SKIPIF1<0所以當(dāng)SKIPIF1<0時(shí),即m=2即時(shí),取得最大值SKIPIF1<0.故答案為:SKIPIF1<0【點(diǎn)睛】方法點(diǎn)睛:(1)聯(lián)立方程,根據(jù)韋達(dá)定理表示出坐標(biāo)關(guān)系式;按照題目中給出的關(guān)系,構(gòu)建關(guān)系式,表示出所求變量;(2)在計(jì)算推理的過程中運(yùn)用整體轉(zhuǎn)化,化簡函數(shù)式,從而得到二次函數(shù)或者不等式,求得最值;本題的解題的關(guān)鍵是,表示出Q點(diǎn)的交點(diǎn)坐標(biāo),找到與t有關(guān)的解析式.16.(2023·全國·模擬預(yù)測)已知數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,且數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,若不等式SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立,則SKIPIF1<0的最小值為______.【答案】SKIPIF1<0【分析】首先利用累乘法或是構(gòu)造數(shù)列SKIPIF1<0求出SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,對(duì)原不等式轉(zhuǎn)化為SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立,結(jié)合函數(shù)單調(diào)性即可求出SKIPIF1<0的最小值.【詳解】由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,又SKIPIF1<0滿足上式,故SKIPIF1<0.另解:由SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,故數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,故SKIPIF1<0,故SKIPIF1<0)所以SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0對(duì)任意的SKIPIF1<0恒成立,所以SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立.令SKIPIF1<0,因?yàn)镾KIPIF1<0,所以t隨著SKIPIF1<0的增大而增大.當(dāng)n為奇數(shù)時(shí),SKIPIF1<0遞減,所以SKIPIF1<0,則SKIPIF1<0;當(dāng)n為偶數(shù)時(shí),SKIPIF1<0遞增,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題的關(guān)鍵在于首先利用累乘法或是構(gòu)造新數(shù)列從而求出SKIPIF1<0,然后就是在對(duì)原不等式的處理上,將其等價(jià)轉(zhuǎn)化為SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立,再設(shè)SKIPIF1<0,SKIPIF1<0,同時(shí)注意函數(shù)與數(shù)列的聯(lián)系與區(qū)別,需要分奇偶討論得到SKIPIF1<0的范圍.四、解答題17.(2023·全國·高三專題練習(xí))已知數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,問是否存在正整數(shù)SKIPIF1<0,使得SKIPIF1<0對(duì)一切SKIPIF1<0恒成立?若存在,請(qǐng)求出SKIPIF1<0的最大值;若不存在,請(qǐng)說明理由.【答案】存在,SKIPIF1<0【分析】假設(shè)題中不等式恒成立,再分離參數(shù),得到SKIPIF1<0與SKIPIF1<0的不等式關(guān)系,再判斷出新數(shù)列的單調(diào)性,即可求出新數(shù)列的取值范圍,最后得出SKIPIF1<0的取值范圍.【詳解】假設(shè)存在正整數(shù)SKIPIF1<0,使得SKIPIF1<0對(duì)一切SKIPIF1<0恒成立,則SKIPIF1<0對(duì)一切SKIPIF1<0恒成立,令SKIPIF1<0,SKIPIF1<0,易知SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0是遞增數(shù)列,即SKIPIF1<0,∴SKIPIF1<0.故SKIPIF1<0.18.(2023·山東菏澤·統(tǒng)考一模)如圖,橢圓SKIPIF1<0的焦點(diǎn)分別為SKIPIF1<0為橢圓SKIPIF1<0上一點(diǎn),SKIPIF1<0的面積最大值為SKIPIF1<0.(1)求橢圓SKIPIF1<0的方程;(2)若SKIPIF1<0分別為橢圓SKIPIF1<0的上?下頂點(diǎn),不垂直坐標(biāo)軸的直線SKIPIF1<0交橢圓SKIPIF1<0于SKIPIF1<0(SKIPIF1<0在上方,SKIPIF1<0在下方,且均不與SKIPIF1<0點(diǎn)重合)兩點(diǎn),直線SKIPIF1<0的斜率分別為SKIPIF1<0,且SKIPIF1<0,求SKIPIF1<0面積的最大值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)根據(jù)條件,得到關(guān)于SKIPIF1<0的方程,即可得到結(jié)果;(2)根據(jù)題意設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立直線與橢圓方程,結(jié)合韋達(dá)定理,再由SKIPIF1<0列出方程,代入計(jì)算,即可得到結(jié)果.【詳解】(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故橢圓的方程為SKIPIF1<0;(2)依題意設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0,聯(lián)立方程組SKIPIF1<0,消元得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0得:SKIPIF1<0,兩邊同除SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0;將SKIPIF1<0代入上式得:SKIPIF1<0整理得:SKIPIF1<0所以SKIPIF1<0或SKIPIF1<0(舍),SKIPIF1<0SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時(shí)等號(hào)成立,滿足條件,所以SKIPIF1<0面積的最大值為SKIPIF1<0.19.(2023春·河南洛陽·高三新安縣第一高級(jí)中學(xué)??奸_學(xué)考試)某公司計(jì)劃在2020年年初將100萬元用于投資,現(xiàn)有兩個(gè)項(xiàng)目供選擇.項(xiàng)目一:新能源汽車.據(jù)市場調(diào)研,投資到該項(xiàng)目上,到年底可能獲利30%,也可能虧損15%,且這兩種情況發(fā)生的概率分別為SKIPIF1<0和SKIPIF1<0;項(xiàng)目二:通信設(shè)備.據(jù)市場調(diào)研,投資到該項(xiàng)目上,到年底可能獲利50%,可能損失30%,也可能不賠不賺,且這三種情況發(fā)生的概率分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)針對(duì)以上兩個(gè)投資項(xiàng)目,請(qǐng)你為投資公司選擇一個(gè)合理的項(xiàng)目,并說明理由;(2)若市場預(yù)期不變,該投資公司按照(1)中選擇的項(xiàng)目長期投資(每一年的利潤和本金繼續(xù)用作投資),問大約在哪一年的年底總資產(chǎn)(利潤+本金)可以翻一番?(參考數(shù)據(jù)SKIPIF1<0,SKIPIF1<0)【答案】(1)建議該投資公司選擇項(xiàng)目一進(jìn)行投資,理由見解析(2)大約在2023年年底總資產(chǎn)可以翻一番【分析】(1)分別計(jì)算兩種投資項(xiàng)目獲利的期望和方差,比較大小,可得出結(jié)論;(2)依題意列出等式,對(duì)數(shù)運(yùn)算即可求解SKIPIF1<0.【詳解】(1)若投資項(xiàng)目一,設(shè)獲利為SKIPIF1<0萬元,則SKIPIF1<0的分布列為SKIPIF1<030-15PSKIPIF1<0SKIPIF1<0SKIPIF1<0.若投資項(xiàng)目二,設(shè)獲利為SKIPIF1<0萬元,則SKIPIF1<0的分布列為SKIPIF1<0500-30PSKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,這說明雖然項(xiàng)目一、項(xiàng)目二獲利的均值相等,但項(xiàng)目一更穩(wěn)妥.綜上所述,建議該投資公司選擇項(xiàng)目一進(jìn)行投資.(2)假設(shè)n年后總資產(chǎn)可以翻一番,依題意,SKIPIF1<0,即SKIPIF1<0,兩邊取對(duì)數(shù),得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0大約在2023年年底總資產(chǎn)可以翻一番.20.(2023春·湖南長沙·高三長沙一中??茧A段練習(xí))近日,某芯片研發(fā)團(tuán)隊(duì)表示已自主研發(fā)成功多維先進(jìn)封裝技術(shù)XDFOI,可以實(shí)現(xiàn)4nm手機(jī)SOC芯片的封裝,這是中國芯片技術(shù)的又一個(gè)重大突破,對(duì)中國芯片的發(fā)展具有極為重要的意義.可以說國產(chǎn)4nm先進(jìn)封裝技術(shù)的突破,激發(fā)了中國芯片的潛力,證明了知名院士倪光南所說的先進(jìn)技術(shù)是買不來的、求不來的,自主研發(fā)才是最終的出路.研發(fā)團(tuán)隊(duì)準(zhǔn)備在國內(nèi)某著名大學(xué)招募人才,準(zhǔn)備了3道測試題,答對(duì)兩道就可以被錄用,甲、乙兩人報(bào)名參加測試,他們通過每道試題的概率均為SKIPIF1<0,且相互獨(dú)立,若甲選擇了全部3道試題,乙隨機(jī)選擇了其中2道試題,試回答下列問題.(所選的題全部答完后再判斷是否被錄用)(1)求甲和乙各自被錄用的概率;(2)設(shè)甲和乙中被錄用的人數(shù)為SKIPIF1<0,請(qǐng)判斷是否存在唯一的SKIPIF1<0值SKIPIF1<0,使得SKIPIF1<0?并說明理由.【答案】(1)甲被錄用的概率為SKIPIF1<0,乙被錄用的概率為SKIPIF1<0(2)不存在;理由見解析【分析】(1)分析已知,甲被錄用符合二項(xiàng)分布,乙被錄用符合組合排列,分別利用對(duì)應(yīng)求概率公式計(jì)算即可.(2)先分析SKIPIF1<0的可能取值,然后分別求解對(duì)應(yīng)概率,再利用離散型數(shù)學(xué)期望的公式表示出數(shù)學(xué)期望,然后構(gòu)造函數(shù),利用求導(dǎo)分析函數(shù)單調(diào)性,進(jìn)而判斷即可.【詳解】(1)由題意,設(shè)甲答對(duì)題目的個(gè)數(shù)為SKIPIF1<0,得SKIPIF1<0,則甲被錄用的概率為SKIPIF1<0,乙被錄用的概率為SKIPIF1<0.(2)SKIPIF1<0的可能取值為0,1,2,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0.∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以不存在SKIPIF1<0的值SKIPIF1<0,使得SKIPIF1<0.21.(2023·內(nèi)蒙古赤峰·統(tǒng)考模擬預(yù)測)已知拋物線SKIPIF1<0,過其焦點(diǎn)F的直線與C相交于A,B兩點(diǎn),分別以A,B為切點(diǎn)作C的切線,相交于點(diǎn)P.(1)求點(diǎn)P的軌跡方程;(2)若PA,PB與x軸分別交于Q,R兩點(diǎn),令SKIPIF1<0的面積為SKIPIF1<0,四邊形PRFQ面積為SKIPIF1<0,求SKIPIF1<0的最小值.【答案】(1)SKIPIF1<0(2)2【分析】(1)利用導(dǎo)數(shù)的幾何意義分別表示出SKIPIF1<0和SKIPIF1<0,設(shè)SKIPIF1<0,分別代入,由直線系方程得到SKIPIF1<0,又由直線AB過焦點(diǎn)F,即可判斷出SKIPIF1<0;(2)利用“設(shè)而不求法”分別求出SKIPIF1<0,證明出四邊形PRFQ為矩形,求出其面積SKIPIF1<0,進(jìn)而求出SKIPIF1<0的最小值.【詳解】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年云南省農(nóng)業(yè)農(nóng)村廳下屬事業(yè)單位真題
- 城市交通需求預(yù)測重點(diǎn)基礎(chǔ)知識(shí)點(diǎn)
- 江蘇省東臺(tái)市第四教育聯(lián)盟2025屆八下數(shù)學(xué)期末預(yù)測試題含解析
- 2024年山西能源學(xué)院輔導(dǎo)員考試真題
- 2024年重慶石柱縣融媒體中心招聘筆試真題
- 班級(jí)故事分享平臺(tái)的建立計(jì)劃
- 2024年湖北省農(nóng)業(yè)農(nóng)村廳下屬事業(yè)單位真題
- 2024年南平市太平鎮(zhèn)衛(wèi)生院招聘筆試真題
- 2024年牡丹江穆棱市鄉(xiāng)村醫(yī)生招聘筆試真題
- 2024年福建福州榕發(fā)物業(yè)發(fā)展有限公司招聘真題
- 2024年山東出版集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 氮化鎵射頻器件
- 習(xí)題課 理想氣體的狀態(tài)方程及狀態(tài)變化圖像
- 手術(shù)室甲狀腺切除術(shù)手術(shù)配合護(hù)理查房
- 建筑工程各類材料送檢取樣規(guī)范(資料員)
- 六年級(jí)下冊綜合實(shí)踐活動(dòng)教案-我愛閱讀 全國通用
- Rexroth (博世力士樂)VFC 3610系列變頻器使用說明書
- 余華《活著》賞析ppt
- 第8章-GNSS測量與定位-課件
- 衛(wèi)生院外傷處置方案
- 某地面工程電力安裝EC總承包工程技術(shù)文件
評(píng)論
0/150
提交評(píng)論