沈陽(yáng)大學(xué)《視覺(jué)傳達(dá)設(shè)計(jì)基礎(chǔ)》2021-2022學(xué)年第一學(xué)期期末試卷_第1頁(yè)
沈陽(yáng)大學(xué)《視覺(jué)傳達(dá)設(shè)計(jì)基礎(chǔ)》2021-2022學(xué)年第一學(xué)期期末試卷_第2頁(yè)
沈陽(yáng)大學(xué)《視覺(jué)傳達(dá)設(shè)計(jì)基礎(chǔ)》2021-2022學(xué)年第一學(xué)期期末試卷_第3頁(yè)
沈陽(yáng)大學(xué)《視覺(jué)傳達(dá)設(shè)計(jì)基礎(chǔ)》2021-2022學(xué)年第一學(xué)期期末試卷_第4頁(yè)
沈陽(yáng)大學(xué)《視覺(jué)傳達(dá)設(shè)計(jì)基礎(chǔ)》2021-2022學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)沈陽(yáng)大學(xué)《視覺(jué)傳達(dá)設(shè)計(jì)基礎(chǔ)》

2021-2022學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計(jì)算機(jī)視覺(jué)的圖像去噪任務(wù)中,假設(shè)要去除一張受到嚴(yán)重噪聲污染的圖像中的噪聲,同時(shí)盡可能保留圖像的細(xì)節(jié)和邊緣信息。以下哪種去噪方法可能更適合?()A.中值濾波,用鄰域中值代替像素值B.均值濾波,用鄰域平均值代替像素值C.基于深度學(xué)習(xí)的圖像去噪模型,如DnCNND.不進(jìn)行任何去噪處理,保留原始噪聲圖像2、計(jì)算機(jī)視覺(jué)中的虛擬現(xiàn)實(shí)(VR)和增強(qiáng)現(xiàn)實(shí)(AR)應(yīng)用需要實(shí)時(shí)生成逼真的視覺(jué)效果。假設(shè)要在一個(gè)VR游戲中為玩家提供沉浸式的視覺(jué)體驗(yàn),或者在AR應(yīng)用中準(zhǔn)確地將虛擬物體與現(xiàn)實(shí)場(chǎng)景融合。以下哪種計(jì)算機(jī)視覺(jué)技術(shù)在實(shí)現(xiàn)這些效果時(shí)至關(guān)重要?()A.實(shí)時(shí)渲染技術(shù)B.空間定位與追蹤技術(shù)C.三維重建與建模技術(shù)D.以上技術(shù)綜合應(yīng)用3、計(jì)算機(jī)視覺(jué)是一門(mén)研究如何讓計(jì)算機(jī)從圖像或視頻中獲取信息和理解內(nèi)容的學(xué)科。在計(jì)算機(jī)視覺(jué)的應(yīng)用中,目標(biāo)檢測(cè)是一項(xiàng)重要任務(wù)。以下關(guān)于目標(biāo)檢測(cè)的描述,不準(zhǔn)確的是()A.目標(biāo)檢測(cè)能夠準(zhǔn)確識(shí)別圖像或視頻中特定類(lèi)別的物體,并確定其位置和大小B.深度學(xué)習(xí)技術(shù)的發(fā)展極大地提高了目標(biāo)檢測(cè)的準(zhǔn)確性和效率C.目標(biāo)檢測(cè)只適用于靜態(tài)圖像,對(duì)于動(dòng)態(tài)視頻的處理效果不佳D.目標(biāo)檢測(cè)在自動(dòng)駕駛、安防監(jiān)控和工業(yè)檢測(cè)等領(lǐng)域有著廣泛的應(yīng)用4、在計(jì)算機(jī)視覺(jué)的目標(biāo)識(shí)別任務(wù)中,假設(shè)目標(biāo)物體被部分遮擋,以下哪種模型架構(gòu)可能更有助于恢復(fù)被遮擋部分的信息?()A.多層感知機(jī)(MLP)B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)C.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)D.注意力機(jī)制(AttentionMechanism)5、計(jì)算機(jī)視覺(jué)中的無(wú)人駕駛技術(shù)是一個(gè)綜合性的應(yīng)用領(lǐng)域。以下關(guān)于無(wú)人駕駛中的計(jì)算機(jī)視覺(jué)的說(shuō)法,不正確的是()A.計(jì)算機(jī)視覺(jué)在無(wú)人駕駛中用于環(huán)境感知、目標(biāo)檢測(cè)、路徑規(guī)劃和障礙物避讓等任務(wù)B.深度學(xué)習(xí)方法能夠?qū)崟r(shí)準(zhǔn)確地識(shí)別道路標(biāo)志、車(chē)輛和行人等物體C.無(wú)人駕駛中的計(jì)算機(jī)視覺(jué)系統(tǒng)已經(jīng)非常成熟,能夠應(yīng)對(duì)各種復(fù)雜的交通場(chǎng)景D.惡劣天氣條件和光照變化等因素仍然是無(wú)人駕駛中計(jì)算機(jī)視覺(jué)面臨的挑戰(zhàn)6、在計(jì)算機(jī)視覺(jué)的行人重識(shí)別任務(wù)中,即在不同攝像頭拍攝的圖像中識(shí)別出同一個(gè)行人,假設(shè)行人的姿態(tài)和服裝發(fā)生了較大變化,以下哪種特征可能具有更強(qiáng)的魯棒性?()A.基于全局特征的描述B.基于局部特征的描述C.基于顏色特征的描述D.基于形狀特征的描述7、計(jì)算機(jī)視覺(jué)在自動(dòng)駕駛領(lǐng)域有廣泛的應(yīng)用。假設(shè)一輛自動(dòng)駕駛汽車(chē)需要識(shí)別道路上的交通標(biāo)志,以下關(guān)于自動(dòng)駕駛中的計(jì)算機(jī)視覺(jué)應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.多攝像頭融合可以提供更全面的道路信息,提高交通標(biāo)志識(shí)別的準(zhǔn)確性B.深度學(xué)習(xí)模型可以實(shí)時(shí)處理攝像頭采集的圖像,快速準(zhǔn)確地識(shí)別交通標(biāo)志C.除了交通標(biāo)志識(shí)別,計(jì)算機(jī)視覺(jué)還可以用于車(chē)道檢測(cè)、行人檢測(cè)和障礙物檢測(cè)等任務(wù)D.自動(dòng)駕駛中的計(jì)算機(jī)視覺(jué)系統(tǒng)完全不需要其他傳感器(如雷達(dá)、激光雷達(dá))的輔助,僅依靠圖像信息就能實(shí)現(xiàn)安全可靠的駕駛8、在計(jì)算機(jī)視覺(jué)的圖像超分辨率重建中,假設(shè)我們要將低分辨率的圖像重建為高分辨率圖像,同時(shí)保持圖像的細(xì)節(jié)和紋理。以下哪種深度學(xué)習(xí)架構(gòu)可能在這方面表現(xiàn)較好?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)C.生成對(duì)抗網(wǎng)絡(luò)(GAN)D.自動(dòng)編碼器(Autoencoder)9、在計(jì)算機(jī)視覺(jué)的三維重建任務(wù)中,例如從多視角圖像恢復(fù)物體的三維形狀,需要解決相機(jī)位姿估計(jì)、特征匹配等問(wèn)題。以下哪種方法在相機(jī)位姿估計(jì)方面可能具有更高的精度?()A.基于直接線性變換的方法B.基于BundleAdjustment的方法C.基于特征點(diǎn)的方法D.基于深度學(xué)習(xí)的方法10、在一個(gè)基于計(jì)算機(jī)視覺(jué)的機(jī)器人導(dǎo)航系統(tǒng)中,需要根據(jù)環(huán)境圖像來(lái)規(guī)劃?rùn)C(jī)器人的路徑。以下哪種視覺(jué)導(dǎo)航方法可能更適合復(fù)雜動(dòng)態(tài)環(huán)境?()A.基于地圖的導(dǎo)航B.基于視覺(jué)里程計(jì)的導(dǎo)航C.基于深度學(xué)習(xí)的端到端導(dǎo)航D.以上都是11、在計(jì)算機(jī)視覺(jué)的圖像分類(lèi)任務(wù)中,假設(shè)要處理類(lèi)別不均衡的數(shù)據(jù)集,即某些類(lèi)別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類(lèi)別。以下關(guān)于處理類(lèi)別不均衡的方法描述,正確的是:()A.直接使用傳統(tǒng)的分類(lèi)算法,類(lèi)別不均衡不會(huì)對(duì)結(jié)果產(chǎn)生明顯影響B(tài).過(guò)采樣少數(shù)類(lèi)別的樣本可以增加其數(shù)量,但可能導(dǎo)致過(guò)擬合C.欠采樣多數(shù)類(lèi)別的樣本能夠平衡數(shù)據(jù)集,但會(huì)丟失部分有用信息D.類(lèi)別不均衡問(wèn)題無(wú)法通過(guò)數(shù)據(jù)處理方法解決,只能通過(guò)改進(jìn)分類(lèi)算法來(lái)應(yīng)對(duì)12、計(jì)算機(jī)視覺(jué)在文物保護(hù)和修復(fù)中具有潛在應(yīng)用。假設(shè)要對(duì)一件受損的古代書(shū)畫(huà)進(jìn)行數(shù)字化修復(fù),以下關(guān)于計(jì)算機(jī)視覺(jué)在文物保護(hù)中的作用的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)圖像增強(qiáng)和去噪技術(shù)改善書(shū)畫(huà)的視覺(jué)效果B.利用圖像匹配和拼接技術(shù)還原殘缺的部分C.計(jì)算機(jī)視覺(jué)技術(shù)能夠完全恢復(fù)文物的原始狀態(tài),使其與未受損時(shí)一模一樣D.為文物修復(fù)專(zhuān)家提供輔助決策和參考依據(jù)13、在計(jì)算機(jī)視覺(jué)的視頻分析中,假設(shè)要對(duì)一段監(jiān)控視頻中的異常行為進(jìn)行檢測(cè)。以下關(guān)于特征提取的方法,哪一項(xiàng)是不太適合的?()A.提取每一幀圖像的顏色、紋理等低級(jí)特征B.利用光流信息來(lái)捕捉物體的運(yùn)動(dòng)特征C.僅分析視頻的音頻信息,忽略圖像內(nèi)容D.結(jié)合時(shí)空特征,同時(shí)考慮空間和時(shí)間維度的信息14、在計(jì)算機(jī)視覺(jué)的發(fā)展中,模型的可解釋性是一個(gè)重要的研究方向。以下關(guān)于模型可解釋性的描述,不準(zhǔn)確的是()A.模型可解釋性旨在理解模型是如何做出決策和生成輸出的B.可解釋性對(duì)于建立用戶(hù)對(duì)模型的信任和確保模型的公正性具有重要意義C.一些可視化技術(shù),如特征圖可視化和類(lèi)激活映射,可以幫助解釋模型的決策過(guò)程D.目前的計(jì)算機(jī)視覺(jué)模型都具有良好的可解釋性,能夠清晰地解釋其決策依據(jù)15、在一個(gè)基于計(jì)算機(jī)視覺(jué)的工業(yè)質(zhì)量檢測(cè)系統(tǒng)中,需要檢測(cè)產(chǎn)品表面的微小缺陷,如劃痕、凹坑等。由于缺陷的尺寸較小且形態(tài)多樣,以下哪種圖像處理算法可能對(duì)缺陷檢測(cè)最為有效?()A.邊緣檢測(cè)算法B.形態(tài)學(xué)操作C.閾值分割算法D.霍夫變換16、在計(jì)算機(jī)視覺(jué)的圖像融合任務(wù)中,將多幅圖像合成為一幅更完整、更有信息的圖像。假設(shè)要將一張白天拍攝的風(fēng)景圖像和一張夜晚拍攝的同一地點(diǎn)的圖像進(jìn)行融合,以下關(guān)于圖像融合方法的描述,哪一項(xiàng)是不正確的?()A.可以基于像素級(jí)的融合策略,將兩幅圖像的像素值進(jìn)行加權(quán)或組合B.特征級(jí)融合方法先提取圖像的特征,然后進(jìn)行融合,能夠更好地保留圖像的語(yǔ)義信息C.圖像融合的效果只取決于融合算法的選擇,與輸入圖像的質(zhì)量和內(nèi)容無(wú)關(guān)D.多模態(tài)圖像融合需要考慮不同圖像的特點(diǎn)和互補(bǔ)性,以獲得更理想的融合結(jié)果17、計(jì)算機(jī)視覺(jué)在農(nóng)業(yè)中的應(yīng)用可以幫助監(jiān)測(cè)農(nóng)作物的生長(zhǎng)狀況。假設(shè)要通過(guò)圖像分析判斷農(nóng)作物的病蟲(chóng)害程度,以下關(guān)于農(nóng)業(yè)計(jì)算機(jī)視覺(jué)應(yīng)用的描述,正確的是:()A.僅依靠農(nóng)作物的顏色特征就能準(zhǔn)確判斷病蟲(chóng)害的程度B.不同農(nóng)作物品種和生長(zhǎng)階段對(duì)病蟲(chóng)害判斷的影響不大C.結(jié)合圖像的紋理、形狀和顏色等多特征,可以更準(zhǔn)確地評(píng)估農(nóng)作物的健康狀況D.農(nóng)業(yè)環(huán)境的復(fù)雜性對(duì)計(jì)算機(jī)視覺(jué)的應(yīng)用沒(méi)有挑戰(zhàn)18、計(jì)算機(jī)視覺(jué)在安防領(lǐng)域的應(yīng)用可以加強(qiáng)監(jiān)控和預(yù)警能力。假設(shè)要通過(guò)攝像頭實(shí)時(shí)監(jiān)測(cè)公共場(chǎng)所的異常行為,以下關(guān)于安防計(jì)算機(jī)視覺(jué)應(yīng)用的描述,正確的是:()A.簡(jiǎn)單的運(yùn)動(dòng)檢測(cè)算法就能準(zhǔn)確識(shí)別各種異常行為B.不考慮人群密度和環(huán)境背景對(duì)異常行為檢測(cè)的影響C.結(jié)合深度學(xué)習(xí)和行為分析模型可以提高異常行為檢測(cè)的準(zhǔn)確性和及時(shí)性D.安防領(lǐng)域的計(jì)算機(jī)視覺(jué)系統(tǒng)不需要考慮隱私保護(hù)和數(shù)據(jù)安全問(wèn)題19、在計(jì)算機(jī)視覺(jué)的目標(biāo)檢測(cè)中,對(duì)于小目標(biāo)的檢測(cè)往往具有較大的挑戰(zhàn)性。為了提高小目標(biāo)檢測(cè)的準(zhǔn)確率,以下哪種策略可能是有效的?()A.多尺度特征融合B.增加訓(xùn)練數(shù)據(jù)中的小目標(biāo)樣本C.使用更高分辨率的輸入圖像D.以上都是20、計(jì)算機(jī)視覺(jué)中的場(chǎng)景理解是一項(xiàng)具有挑戰(zhàn)性的任務(wù)。假設(shè)要理解一個(gè)城市街道的場(chǎng)景圖像,包括道路、建筑物、車(chē)輛和行人等元素。以下關(guān)于場(chǎng)景理解方法的描述,正確的是:()A.基于語(yǔ)義分割的方法能夠?qū)D像中的每個(gè)像素分類(lèi)為不同的場(chǎng)景元素,但無(wú)法提供元素之間的關(guān)系B.目標(biāo)檢測(cè)結(jié)合語(yǔ)義分割可以實(shí)現(xiàn)對(duì)場(chǎng)景的初步理解,但對(duì)于復(fù)雜的場(chǎng)景結(jié)構(gòu)難以準(zhǔn)確描述C.基于圖模型的方法能夠很好地表示場(chǎng)景元素之間的關(guān)系,但建模過(guò)程復(fù)雜,計(jì)算量大D.場(chǎng)景理解只需要對(duì)圖像中的可見(jiàn)元素進(jìn)行分析,不需要考慮潛在的語(yǔ)義信息二、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)簡(jiǎn)述計(jì)算機(jī)視覺(jué)在工業(yè)檢測(cè)中的任務(wù)和優(yōu)勢(shì)。2、(本題5分)解釋計(jì)算機(jī)視覺(jué)中的模型量化技術(shù)。3、(本題5分)解釋計(jì)算機(jī)視覺(jué)中的半監(jiān)督學(xué)習(xí)在目標(biāo)檢測(cè)中的應(yīng)用。4、(本題5分)說(shuō)明計(jì)算機(jī)視覺(jué)在農(nóng)民工服務(wù)中的應(yīng)用。5、(本題5分)說(shuō)明計(jì)算機(jī)視覺(jué)在舊貨回收行業(yè)中的應(yīng)用。三、分析題(本大題共5個(gè)小題,共25分)1、(本題5分)分析蘋(píng)果手機(jī)的安全功能廣告設(shè)計(jì),從隱私保護(hù)、數(shù)據(jù)安全到品牌形象傳達(dá)。探討其如何提升用戶(hù)的安全感和信任度。2、(本題5分)以某珠寶品牌的定制服務(wù)宣傳海報(bào)設(shè)計(jì)為例,分析其個(gè)性化設(shè)計(jì)、精湛工藝展示、專(zhuān)屬服務(wù)介紹如何吸引消費(fèi)者定制珠寶。3、(本題5分)以某大學(xué)的招生宣傳冊(cè)設(shè)計(jì)為例,分析其校園美景、豐富的學(xué)術(shù)活動(dòng)、優(yōu)秀的師資介紹如何吸引學(xué)生報(bào)考。4、(本題5分)分析某書(shū)店的室

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論