版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題20橢圓【考點(diǎn)專題】1.橢圓的概念平面內(nèi)與兩個(gè)定點(diǎn)F1,F(xiàn)2的距離的和等于常數(shù)(大于|F1F2|)的點(diǎn)的軌跡叫做橢圓.這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)間的距離叫做橢圓的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c<2a,其中a>0,c>0,且a,c為常數(shù).2.橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)標(biāo)準(zhǔn)方程eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)eq\f(y2,a2)+eq\f(x2,b2)=1(a>b>0)圖形性質(zhì)范圍-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a對(duì)稱性對(duì)稱軸:坐標(biāo)軸對(duì)稱中心:原點(diǎn)頂點(diǎn)坐標(biāo)A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)軸長(zhǎng)軸A1A2的長(zhǎng)為2a;短軸B1B2的長(zhǎng)為2b焦距|F1F2|=2c離心率e=eq\f(c,a)∈(0,1)a,b,c的關(guān)系a2=b2+c2【方法技巧】1.橢圓的離心率(或離心率的取值范圍),常見(jiàn)求法:①求出a,c,代入公式SKIPIF1<0;②只需要根據(jù)一個(gè)條件得到關(guān)于a,b,c的齊次式,結(jié)合SKIPIF1<0轉(zhuǎn)化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或SKIPIF1<0轉(zhuǎn)化為關(guān)于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍).2.涉及與橢圓有關(guān)的軌跡方程及橢圓中的定點(diǎn)定值,.求軌跡方程方法為直接法,即將題意轉(zhuǎn)化為代數(shù)語(yǔ)言,化簡(jiǎn)即得軌跡方程;對(duì)于定點(diǎn)問(wèn)題,??捎蓪?duì)稱性確定定點(diǎn)所在位置,后由三點(diǎn)共線結(jié)合向量共線或斜率相等可得定點(diǎn)坐標(biāo).【核心題型】題型一:利用橢圓的定義解決焦點(diǎn)三角形或者邊長(zhǎng)問(wèn)題1.(2023·全國(guó)·高三專題練習(xí))已知橢圓C的焦點(diǎn)為SKIPIF1<0,過(guò)SKIPIF1<0的直線與C交于P,Q兩點(diǎn),若SKIPIF1<0,則橢圓C的標(biāo)準(zhǔn)方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2023·全國(guó)·高三專題練習(xí))已知點(diǎn)P是橢圓C:SKIPIF1<0上一點(diǎn),點(diǎn)SKIPIF1<0、SKIPIF1<0是橢圓C的左、右焦點(diǎn),若SKIPIF1<0的內(nèi)切圓半徑的最大值為SKIPIF1<0,若橢圓的長(zhǎng)軸長(zhǎng)為4,則SKIPIF1<0的面積的最大值為(
)A.2 B.2SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022秋·黑龍江佳木斯·高三建三江分局第一中學(xué)??计谥校┮阎谄矫嬷苯亲鴺?biāo)系中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,P為該平面上一動(dòng)點(diǎn),記直線PD,PE的斜率分別為SKIPIF1<0和SKIPIF1<0,且SKIPIF1<0,設(shè)點(diǎn)P運(yùn)動(dòng)形成曲線F,點(diǎn)M是曲線F上位于x軸上方的點(diǎn),則下列說(shuō)法錯(cuò)誤的有(
)A.動(dòng)點(diǎn)P的軌跡方程為SKIPIF1<0B.SKIPIF1<0面積的最大值為SKIPIF1<0C.SKIPIF1<0的最大值為5D.SKIPIF1<0的周長(zhǎng)為6題型二:待定系數(shù)法求橢圓方程4.(2022·全國(guó)·高三專題練習(xí))平面直角坐標(biāo)系中,橢圓C中心在原點(diǎn),焦點(diǎn)SKIPIF1<0在x軸上,離心率為SKIPIF1<0.過(guò)點(diǎn)SKIPIF1<0的直線l與C交于A、B兩點(diǎn),且△SKIPIF1<0周長(zhǎng)為SKIPIF1<0,那么C的方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·全國(guó)·高三專題練習(xí))已知SKIPIF1<0、SKIPIF1<0是橢圓C:SKIPIF1<0SKIPIF1<0的左、右焦點(diǎn),A為橢圓的上頂點(diǎn),B在x軸上,SKIPIF1<0且SKIPIF1<0.若坐標(biāo)原點(diǎn)O到直線AB的距離為3,則橢圓C的方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<06.(2023·全國(guó)·高三專題練習(xí))已知雙曲線SKIPIF1<0的左、右頂點(diǎn)為SKIPIF1<0,SKIPIF1<0,焦點(diǎn)在y軸上的橢圓以SKIPIF1<0,SKIPIF1<0為頂點(diǎn),且離心率為SKIPIF1<0,過(guò)SKIPIF1<0作斜率為SKIPIF1<0的直線SKIPIF1<0交雙曲線于另一點(diǎn)SKIPIF1<0,交橢圓于另一點(diǎn)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型三:直接法求橢圓離心率問(wèn)題7.(2023·云南昆明·高三昆明一中??茧A段練習(xí))已知橢圓C:SKIPIF1<0的左右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,點(diǎn)P是C上的一個(gè)動(dòng)點(diǎn),若橢圓C上有且僅有4個(gè)點(diǎn)P滿足SKIPIF1<0是直角三角形,則橢圓C的離心率的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<08.(2023·全國(guó)·高三專題練習(xí))已知橢圓SKIPIF1<0的左焦點(diǎn)為SKIPIF1<0,過(guò)SKIPIF1<0且斜率為SKIPIF1<0的直線SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0兩點(diǎn),與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<09.(2023·山東淄博·統(tǒng)考一模)直線SKIPIF1<0經(jīng)過(guò)橢圓SKIPIF1<0的左焦點(diǎn)SKIPIF1<0,交橢圓于SKIPIF1<0,SKIPIF1<0兩點(diǎn),交SKIPIF1<0軸于SKIPIF1<0點(diǎn),若SKIPIF1<0,則該橢圓的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型四:構(gòu)造齊次方程求離心率10.(2023·湖南邵陽(yáng)·統(tǒng)考二模)已知橢圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,半焦距為SKIPIF1<0.在橢圓上存在點(diǎn)SKIPIF1<0使得SKIPIF1<0,則橢圓離心率的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<011.(2023秋·河北保定·高三統(tǒng)考期末)已知橢圓C:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別為橢圓的左、右焦點(diǎn),P為橢圓上一點(diǎn),SKIPIF1<0,過(guò)SKIPIF1<0作SKIPIF1<0外角平分線的垂線交SKIPIF1<0的延長(zhǎng)線于N點(diǎn).若SKIPIF1<0,則橢圓的離心率(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<012.(2023·江西贛州·統(tǒng)考一模)已知橢圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0.橢圓SKIPIF1<0在第一象限存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0,直線SKIPIF1<0與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,且SKIPIF1<0是SKIPIF1<0的角平分線,則橢圓SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型五:利用自變量范圍求離心率范圍13.(2023·全國(guó)·高三專題練習(xí))設(shè)橢圓SKIPIF1<0離心率為e,雙曲線SKIPIF1<0的漸近線的斜率小于SKIPIF1<0,則橢圓SKIPIF1<0的離心率e的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<014.(2022秋·黑龍江鶴崗·高三鶴崗一中校考階段練習(xí))已知橢圓SKIPIF1<0:SKIPIF1<0,定點(diǎn)SKIPIF1<0,SKIPIF1<0,有一動(dòng)點(diǎn)SKIPIF1<0滿足SKIPIF1<0,若SKIPIF1<0點(diǎn)軌跡與橢圓SKIPIF1<0恰有4個(gè)不同的交點(diǎn),則橢圓SKIPIF1<0的離心率的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<015.(2022·四川綿陽(yáng)·四川省綿陽(yáng)南山中學(xué)校考二模)已知點(diǎn)P在以SKIPIF1<0,SKIPIF1<0為左、右焦點(diǎn)的橢圓SKIPIF1<0上,橢圓內(nèi)存在一點(diǎn)Q在SKIPIF1<0的延長(zhǎng)線上,且滿足SKIPIF1<0,若SKIPIF1<0,則該橢圓離心率取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型六:橢圓的綜合問(wèn)題16.(2023·寧夏·六盤山高級(jí)中學(xué)校考一模)已知橢圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,上頂點(diǎn)為SKIPIF1<0,若△SKIPIF1<0為等邊三角形,且點(diǎn)SKIPIF1<0在橢圓E上.(1)求橢圓E的方程;(2)設(shè)橢圓E的左、右頂點(diǎn)分別為SKIPIF1<0,不過(guò)坐標(biāo)原點(diǎn)的直線l與橢圓E相交于A、B兩點(diǎn)(異于橢圓E的頂點(diǎn)),直線SKIPIF1<0與y軸的交點(diǎn)分別為M、N,若SKIPIF1<0,證明:直線過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo).17.(2023·河南開(kāi)封·開(kāi)封高中??寄M預(yù)測(cè))已知橢圓SKIPIF1<0的中心為坐標(biāo)原點(diǎn),對(duì)稱軸為SKIPIF1<0軸?SKIPIF1<0軸,且過(guò)SKIPIF1<0兩點(diǎn).(1)求SKIPIF1<0的方程;(2)設(shè)過(guò)點(diǎn)SKIPIF1<0的直線交SKIPIF1<0于SKIPIF1<0兩點(diǎn),點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0軸的對(duì)稱點(diǎn)為SKIPIF1<0,問(wèn)直線SKIPIF1<0是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.18.(2023春·天津河西·高三天津市新華中學(xué)??茧A段練習(xí))設(shè)橢圓SKIPIF1<0的右焦點(diǎn)為F,右頂點(diǎn)為A,已知橢圓離心率為SKIPIF1<0,過(guò)點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長(zhǎng)為3.(1)求橢圓C的方程;(2)設(shè)過(guò)點(diǎn)A的直線l與橢圓C交于點(diǎn)B(B不在x軸上),垂直于l的直線與l交于點(diǎn)M,與y軸交于點(diǎn)H,若以BH為直徑的圓經(jīng)過(guò)點(diǎn)F,設(shè)直線l的斜率為k,直線OM的斜率為SKIPIF1<0,且SKIPIF1<0,求直線l斜率k的取值范圍.【高考必刷】一、單選題19.(2023·河南·洛陽(yáng)市第三中學(xué)校聯(lián)考一模)已知過(guò)橢圓SKIPIF1<0的上焦點(diǎn)SKIPIF1<0且斜率為SKIPIF1<0的直線SKIPIF1<0交橢圓SKIPIF1<0于SKIPIF1<0兩點(diǎn),SKIPIF1<0為坐標(biāo)原點(diǎn),直線SKIPIF1<0分別與直線SKIPIF1<0相交于SKIPIF1<0兩點(diǎn).若SKIPIF1<0為銳角,則直線SKIPIF1<0的斜率SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<020.(2023·山東日照·統(tǒng)考一模)已知橢圓SKIPIF1<0:SKIPIF1<0的左、右焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0為橢圓SKIPIF1<0內(nèi)一點(diǎn),點(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0:SKIPIF1<0上,若橢圓上存在一點(diǎn)SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<021.(2023·全國(guó)·高三專題練習(xí))設(shè)SKIPIF1<0,SKIPIF1<0分別是橢圓SKIPIF1<0的左、右焦點(diǎn),點(diǎn)P,Q在橢圓C上,若SKIPIF1<0SKIPIF1<0,且SKIPIF1<0,則橢圓C的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<022.(2023·河南焦作·統(tǒng)考模擬預(yù)測(cè))分別過(guò)橢圓SKIPIF1<0的左、右焦點(diǎn)SKIPIF1<0、SKIPIF1<0作平行直線SKIPIF1<0、SKIPIF1<0,直線SKIPIF1<0、SKIPIF1<0在SKIPIF1<0軸上方分別與SKIPIF1<0交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),若SKIPIF1<0與SKIPIF1<0之間的距離為SKIPIF1<0,且SKIPIF1<0(SKIPIF1<0表示面積,SKIPIF1<0為坐標(biāo)原點(diǎn)),則SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<023.(2023·浙江·模擬預(yù)測(cè))已知橢圓SKIPIF1<0的左、右焦點(diǎn)為SKIPIF1<0為橢圓上一點(diǎn),過(guò)P點(diǎn)作橢圓的切線l,PM垂直于直線l且與x軸交于點(diǎn)M,若M為SKIPIF1<0的中點(diǎn),則該橢圓的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<024.(2023·遼寧沈陽(yáng)·統(tǒng)考一模)已知橢圓SKIPIF1<0的右焦點(diǎn)為F,過(guò)F作傾斜角為SKIPIF1<0的直線l交該橢圓上半部分于點(diǎn)P,以FP,F(xiàn)O(O為坐標(biāo)原點(diǎn))為鄰邊作平行四邊形SKIPIF1<0,點(diǎn)Q恰好也在該橢圓上,則該橢圓的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<025.(2023·全國(guó)·模擬預(yù)測(cè))已知橢圓SKIPIF1<0的左?右焦點(diǎn)分別為SKIPIF1<0,點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0上,若離心率SKIPIF1<0,則橢圓SKIPIF1<0的離心率的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<026.(2023·全國(guó)·高三專題練習(xí))已知橢圓SKIPIF1<0的左右焦點(diǎn)分別為SKIPIF1<0,橢圓存在一點(diǎn)SKIPIF1<0,若SKIPIF1<0,則橢圓的離心率取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0二、多選題27.(2023春·全國(guó)·高三校聯(lián)考階段練習(xí))已知SKIPIF1<0是雙曲線SKIPIF1<0的左、右焦點(diǎn),SKIPIF1<0是C上一點(diǎn),若C的離心率為SKIPIF1<0,連結(jié)SKIPIF1<0交C于點(diǎn)B,則(
)A.C的方程為SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0的周長(zhǎng)為SKIPIF1<0 D.SKIPIF1<0的內(nèi)切圓半徑為SKIPIF1<028.(2023·河北邢臺(tái)·校聯(lián)考模擬預(yù)測(cè))已知橢圓SKIPIF1<0的左焦點(diǎn)為SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的上頂點(diǎn),SKIPIF1<0,SKIPIF1<0是SKIPIF1<0上兩點(diǎn).若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0構(gòu)成以SKIPIF1<0為公差的等差數(shù)列,則(
)A.SKIPIF1<0的最大值是SKIPIF1<0B.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0C.當(dāng)SKIPIF1<0,SKIPIF1<0在SKIPIF1<0軸的同側(cè)時(shí),SKIPIF1<0的最大值為SKIPIF1<0D.當(dāng)SKIPIF1<0,SKIPIF1<0在SKIPIF1<0軸的異側(cè)時(shí)(SKIPIF1<0,SKIPIF1<0與SKIPIF1<0不重合),SKIPIF1<029.(2023·山西晉中·統(tǒng)考二模)已知橢圓C:SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,上頂點(diǎn)為B,直線l:SKIPIF1<0與橢圓C交于M,N兩點(diǎn),SKIPIF1<0的角平分線與x軸相交于點(diǎn)E,與y軸相交于點(diǎn)SKIPIF1<0,則(
)A.四邊形SKIPIF1<0的周長(zhǎng)為8 B.SKIPIF1<0的最小值為9C.直線BM,BN的斜率之積為SKIPIF1<0 D.當(dāng)SKIPIF1<0時(shí),SKIPIF1<030.(2023·湖南·模擬預(yù)測(cè))已知橢圓:SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,右頂點(diǎn)為A,點(diǎn)M為橢圓SKIPIF1<0上一點(diǎn),點(diǎn)I是SKIPIF1<0的內(nèi)心,延長(zhǎng)MI交線段SKIPIF1<0于N,拋物線SKIPIF1<0(其中c為橢圓下的半焦距)與橢圓SKIPIF1<0交于B,C兩點(diǎn),若四邊形SKIPIF1<0是菱形,則下列結(jié)論正確的是(
)A.SKIPIF1<0 B.橢圓SKIPIF1<0的離心率是SKIPIF1<0C.SKIPIF1<0的最小值為SKIPIF1<0 D.SKIPIF1<0的值為SKIPIF1<0三、填空題31.(2023·廣東江門·統(tǒng)考一模)橢圓是特別重要的一類圓錐曲線,是平面解析幾何的核心,它集中地體現(xiàn)了解析幾何的基本思想.而黃金橢圓是一條優(yōu)美曲線,生活中許多橢圓形的物品,都是黃金橢圓,它完美絕倫,深受人們的喜愛(ài).黃金橢圓具有以下性質(zhì):①以長(zhǎng)軸與短軸的四個(gè)頂點(diǎn)構(gòu)成的菱形內(nèi)切圓經(jīng)過(guò)兩個(gè)焦點(diǎn),②長(zhǎng)軸長(zhǎng),短軸長(zhǎng),焦距依次組成等比數(shù)列.根據(jù)以上信息,黃金橢圓的離心率為_(kāi)__________.32.(2023·陜西咸陽(yáng)·陜西咸陽(yáng)中學(xué)??寄M預(yù)測(cè))經(jīng)研究發(fā)現(xiàn),若點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0上,則過(guò)點(diǎn)SKIPIF1<0的橢圓切線方程為SKIPIF1<0.現(xiàn)過(guò)點(diǎn)SKIPI
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- Unit 3 Section B 1a-1e 說(shuō)課稿 2024-2025學(xué)年人教版英語(yǔ)八年級(jí)下冊(cè)
- 《花果山上學(xué)數(shù)學(xué)-兩位數(shù)乘一位數(shù)(一)》說(shuō)課稿-2024-2025學(xué)年三年級(jí)上冊(cè)數(shù)學(xué)浙教版
- 5《合理消費(fèi)》第一課時(shí)(說(shuō)課稿)2023-2024學(xué)年統(tǒng)編版道德與法治四年級(jí)下冊(cè)
- 籃球行進(jìn)間單手低手投籃 說(shuō)課稿-2023-2024學(xué)年高一上學(xué)期體育與健康人教版必修第一冊(cè)
- Unit 4 Natural Disasters Reading and thinking說(shuō)課稿-2024-2025學(xué)年高中英語(yǔ)人教版(2019)必修第一冊(cè)
- 排球?qū)|球 說(shuō)課稿-2024-2025學(xué)年高一上學(xué)期體育與健康人教版必修第一冊(cè)
- Unit 2 Lesson 4 說(shuō)課稿 2024-2025學(xué)年冀教版(2024)英語(yǔ)七年級(jí)上冊(cè)
- 2025年度鋼材質(zhì)量保證合同3篇
- 粵教版必修 信息技術(shù)基礎(chǔ) 1.2 信息技術(shù)的應(yīng)用與影響 說(shuō)課稿
- 臨時(shí)保安人員雇傭協(xié)議2024年專用版B版
- 廣東省潮州市潮安區(qū)2023-2024學(xué)年五年級(jí)上學(xué)期期末考試數(shù)學(xué)試題
- 醫(yī)療科研倫理審核制度
- 市政道路及設(shè)施零星養(yǎng)護(hù)服務(wù)技術(shù)方案(技術(shù)標(biāo))
- 鉆機(jī)操作規(guī)程專項(xiàng)培訓(xùn)考試題及答案
- 2024助貸委托服務(wù)協(xié)議合同模板
- 工程款結(jié)算協(xié)議書(shū)-景觀綠化結(jié)算
- 成人教育培訓(xùn)方案
- 王者榮耀各英雄各項(xiàng)初始、滿級(jí)屬性-成長(zhǎng)值
- 飲食春節(jié)健康宣教課件
- 《論語(yǔ)》學(xué)而篇-第一課件
- 光伏項(xiàng)目安全專項(xiàng)施工方案
評(píng)論
0/150
提交評(píng)論