新高考數(shù)學(xué)二輪復(fù)習(xí)講義專題14 數(shù)列的通項(xiàng)公式常考求法 原卷版_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)講義專題14 數(shù)列的通項(xiàng)公式??记蠓?原卷版_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)講義專題14 數(shù)列的通項(xiàng)公式??记蠓?原卷版_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)講義專題14 數(shù)列的通項(xiàng)公式??记蠓?原卷版_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)講義專題14 數(shù)列的通項(xiàng)公式??记蠓?原卷版_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題14數(shù)列的通項(xiàng)公式??记蠓ā究键c(diǎn)專題】1.Sn和an關(guān)系法求數(shù)列通項(xiàng)(作差法):(1)已知Sn求an的常用方法是利用an=eq\b\lc\{\rc\(\a\vs4\al\co1(S1,n=1,,Sn-Sn-1,n≥2))轉(zhuǎn)化為關(guān)于an的關(guān)系式,再求通項(xiàng)公式.(2)Sn與an關(guān)系問題的求解思路方向1:利用an=Sn-Sn-1(n≥2)轉(zhuǎn)化為只含Sn,Sn-1的關(guān)系式,再求解.方向2:利用Sn-Sn-1=an(n≥2)轉(zhuǎn)化為只含an,an-1的關(guān)系式,再求解.2.累加法當(dāng)出現(xiàn)an+1=an+f(n)時(shí),用累加法求解.3.累乘法當(dāng)出現(xiàn)eq\f(an+1,an)=f(n)時(shí),用累乘法求解.4.構(gòu)造法類型1:用“待定系數(shù)法”構(gòu)造等比數(shù)列SKIPIF1<01、注意判斷題目給的已知條件是否符合類型1的標(biāo)準(zhǔn)形式;2、SKIPIF1<0直接記憶,解題時(shí)直接在草稿紙上構(gòu)造好;3、構(gòu)造等比數(shù)列SKIPIF1<0類型2:用“同除法”構(gòu)造等差數(shù)列SKIPIF1<01、注意判斷題目給的已知條件是否符合類型2的標(biāo)準(zhǔn)形式;2、兩邊同除SKIPIF1<0;3、構(gòu)造數(shù)列SKIPIF1<0為等差數(shù)列類型3:用兩邊同時(shí)取倒數(shù)構(gòu)造等差數(shù)列(1)1、注意判斷題目給的已知條件是否符合類型3的標(biāo)準(zhǔn)形式;2、兩邊同時(shí)取倒數(shù)轉(zhuǎn)化為eq\f(1,an+1)=eq\f(s,p)·eq\f(1,an)+eq\f(r,p)的形式,化歸為bn+1=pbn+q型;3、構(gòu)造數(shù)列SKIPIF1<0為等差數(shù)列.類型3:用“同除法”構(gòu)造等差數(shù)列(2)SKIPIF1<01、注意判斷題目給的已知條件是否符合類型3的標(biāo)準(zhǔn)形式;2、兩邊同除SKIPIF1<0;3、構(gòu)造出新的等差數(shù)列SKIPIF1<0類型4:用“待定系數(shù)法”構(gòu)造等比數(shù)列an+1=pan+qan-11、注意判斷題目給的已知條件是否符合類型3的標(biāo)準(zhǔn)形式;2、可以化為an+1-x1an=x2(an-x1an-1),其中x1,x2是方程x2-px-q=0的兩個(gè)根;3、若1是方程的根,則直接構(gòu)造數(shù)列{an-an-1},若1不是方程的根,則需要構(gòu)造兩個(gè)數(shù)列,采取消元的方法求數(shù)列{an}.【方法技巧】常見的裂項(xiàng)公式:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0.給出SKIPIF1<0與SKIPIF1<0的遞推關(guān)系,求SKIPIF1<0,常用思路是:一是利用SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0的遞推關(guān)系,再求其通項(xiàng)公式;二是轉(zhuǎn)化為SKIPIF1<0的遞推關(guān)系,先求出SKIPIF1<0與n之間的關(guān)系,再求SKIPIF1<0.【核心題型】題型一:累加法求通項(xiàng)公式1.(2022·上海虹口·統(tǒng)考一模)已知函數(shù)SKIPIF1<0,數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0(SKIPIF1<0為正整數(shù)).則SKIPIF1<0(

)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.SKIPIF1<02.(2022·全國(guó)·模擬預(yù)測(cè))在數(shù)列SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2023·湖北武漢·統(tǒng)考模擬預(yù)測(cè))南宋數(shù)學(xué)家楊輝為我國(guó)古代數(shù)學(xué)研究作出了杰出貢獻(xiàn),他的著名研究成果“楊輝三角”記錄于其重要著作《詳解九章算法》,該著作中的“垛積術(shù)”問題介紹了高階等差數(shù)列.以高階等差數(shù)列中的二階等差數(shù)列為例,其特點(diǎn)是從數(shù)列中的第二項(xiàng)開始,每一項(xiàng)與前一項(xiàng)的差構(gòu)成等差數(shù)列.若某個(gè)二階等差數(shù)列的前4項(xiàng)為:2,3,6,11,則該數(shù)列的第15項(xiàng)為(

)A.196 B.197 C.198 D.199題型二:累乘法求通項(xiàng)公式4.(2022秋·寧夏銀川·高三??茧A段練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·河南·安陽一中校聯(lián)考模擬預(yù)測(cè))在數(shù)列SKIPIF1<0中,SKIPIF1<0且SKIPIF1<0,則它的前SKIPIF1<0項(xiàng)和SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2022·全國(guó)·高三專題練習(xí))在數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,且對(duì)任意SKIPIF1<0,SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0題型三:Sn和an關(guān)系法求數(shù)列通項(xiàng)7.(2023·全國(guó)·校聯(lián)考模擬預(yù)測(cè))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,若數(shù)列SKIPIF1<0為單調(diào)遞增數(shù)列,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.(2022秋·甘肅武威·高三??茧A段練習(xí))已知數(shù)列滿足SKIPIF1<0,設(shè)SKIPIF1<0,則數(shù)列SKIPIF1<0的前2023項(xiàng)和為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<09.(2023·全國(guó)·高三專題練習(xí))數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0,則數(shù)列SKIPIF1<0中的最大項(xiàng)為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型四:構(gòu)造法求通項(xiàng)公式10.(2023·四川瀘州·瀘州老窖天府中學(xué)校考模擬預(yù)測(cè))已知數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的前10項(xiàng)和SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.211.(2022·全國(guó)·高三)若數(shù)列SKIPIF1<0和SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<012.(2022·江西萍鄉(xiāng)·統(tǒng)考一模)數(shù)列SKIPIF1<0各項(xiàng)均是正數(shù),SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線過點(diǎn)SKIPIF1<0,則下列命題正確的個(gè)數(shù)是(

).①SKIPIF1<0;②數(shù)列SKIPIF1<0是等比數(shù)列;③數(shù)列SKIPIF1<0是等比數(shù)列;④SKIPIF1<0.A.1 B.2 C.3 D.4題型五:觀察法求通項(xiàng)公式13.(2022·全國(guó)·模擬預(yù)測(cè))大衍數(shù)列,來源于《乾坤譜》中對(duì)易傳“大衍之?dāng)?shù)五十”的推論.其前10項(xiàng)依次為0,2,4,8,12,18,24,32,40,50,現(xiàn)將大衍數(shù)列各數(shù)按照如圖排列形成一個(gè)數(shù)表,則該數(shù)表中第8行第3個(gè)數(shù)是(

)A.152 B.480 C.512 D.84014.(2021·廣東珠?!そy(tǒng)考一模)已知從1開始的連續(xù)奇數(shù)首尾相接蛇形排列形成如圖三角形數(shù)表,第SKIPIF1<0行第SKIPIF1<0列的數(shù)記為SKIPIF1<0,如SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0時(shí),SKIPIF1<0(

)A.54 B.18 C.9 D.615.(2020秋·黑龍江哈爾濱·高三黑龍江實(shí)驗(yàn)中學(xué)??茧A段練習(xí))歷史上數(shù)列的發(fā)展,折射出許多有價(jià)值的數(shù)學(xué)思想方法,對(duì)時(shí)代的進(jìn)步起了重要的作用,比如意大利數(shù)學(xué)家列昂納多·斐波那契以兔子繁殖為例,引入“兔子數(shù)列”:即1,1,2,3,5,8,13,21,34,55,89,144,233,….即SKIPIF1<0,SKIPIF1<0,(SKIPIF1<0,SKIPIF1<0).此數(shù)列在現(xiàn)代物理及化學(xué)等領(lǐng)域有著廣泛的應(yīng)用,若此數(shù)列被4整除后的余數(shù)構(gòu)成一個(gè)新的數(shù)列SKIPIF1<0,又記數(shù)列SKIPIF1<0滿SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.0題型六:遞推公式寫通項(xiàng)公式16.(2021·甘肅武威·武威第六中學(xué)??寄M預(yù)測(cè))已知數(shù)列SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0等于(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<017.(2022·全國(guó)·高三專題練習(xí))設(shè)數(shù)列SKIPIF1<0滿足SKIPIF1<0,記數(shù)列SKIPIF1<0的前n項(xiàng)的和為SKIPIF1<0,則(

)A.SKIPIF1<0 B.存在SKIPIF1<0,使SKIPIF1<0C.SKIPIF1<0 D.?dāng)?shù)列SKIPIF1<0不具有單調(diào)性18.(2022·安徽滁州·??寄M預(yù)測(cè))已知函數(shù)f(x)的定義域?yàn)镽,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,且對(duì)任意的實(shí)數(shù)x,SKIPIF1<0,等式SKIPIF1<0成立,若數(shù)列{SKIPIF1<0)滿足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【高考必刷】一、單選題19.(2023·河南·校聯(lián)考模擬預(yù)測(cè))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<020.(2023·全國(guó)·校聯(lián)考模擬預(yù)測(cè))記數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0.若等比數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<021.(2023·四川南充·四川省南充高級(jí)中學(xué)??寄M預(yù)測(cè))已知數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<022.(2023春·河南·高三洛陽市第三中學(xué)校聯(lián)考開學(xué)考試)若一個(gè)數(shù)列的后項(xiàng)與其相鄰的前項(xiàng)的差值構(gòu)成的數(shù)列為等差數(shù)列,則稱此數(shù)列為二階等差數(shù)列.現(xiàn)有二階等差數(shù)列:2,3,5,8,12,17,23,…,設(shè)此數(shù)列為SKIPIF1<0,若數(shù)列SKIPIF1<0滿足SKIPIF1<0,則數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<023.(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0是數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,且SKIPIF1<0,SKIPIF1<0(SKIPIF1<0),則下列結(jié)論正確的是(

)A.?dāng)?shù)列SKIPIF1<0為等比數(shù)列 B.?dāng)?shù)列SKIPIF1<0為等比數(shù)列C.SKIPIF1<0 D.SKIPIF1<024.(2023秋·河南開封·高三統(tǒng)考期末)在數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0是等比數(shù)列 B.SKIPIF1<0是等比數(shù)列C.SKIPIF1<0是等比數(shù)列 D.SKIPIF1<0是等比數(shù)列25.(2023·全國(guó)·高三專題練習(xí))設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0.若對(duì)任意的正整數(shù)SKIPIF1<0,都有SKIPIF1<0成立,則滿足等式SKIPIF1<0的所有正整數(shù)SKIPIF1<0為(

)A.1或3 B.2或3 C.1或4 D.2或426.(2023·江西景德鎮(zhèn)·統(tǒng)考模擬預(yù)測(cè))楊輝是南宋杰出的數(shù)學(xué)家,他曾擔(dān)任過南宋地方行政官員,為政清廉,足跡遍及蘇杭一帶.楊輝一生留下了大量的著述,他給出了著名的三角垛公式:SKIPIF1<0.若正項(xiàng)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且滿足SKIPIF1<0,數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,則根據(jù)三角垛公式,可得數(shù)列SKIPIF1<0的前10項(xiàng)和SKIPIF1<0(

)A.440 B.480 C.540 D.58027.(2023秋·山西運(yùn)城·高三統(tǒng)考期末)已知SKIPIF1<0為數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,且滿足SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<028.(2023春·廣東汕尾·高三汕尾市城區(qū)汕尾中學(xué)??计谀└唠A等差數(shù)列是數(shù)列逐項(xiàng)差數(shù)之差或高次差相等的數(shù)列,中國(guó)古代許多著名的數(shù)學(xué)家對(duì)推導(dǎo)高階等差數(shù)列的求和公式很感興趣,創(chuàng)造并發(fā)展了名為“垛積術(shù)”的算法,展現(xiàn)了聰明才智SKIPIF1<0如南宋數(shù)學(xué)家楊輝在《詳解九章算法SKIPIF1<0商功》一書中記載的三角垛、方垛、芻甍垛等的求和都與高階等差數(shù)列有關(guān)SKIPIF1<0如圖是一個(gè)三角垛,最頂層有SKIPIF1<0個(gè)小球,第二層有SKIPIF1<0個(gè),第三層有SKIPIF1<0個(gè),第四層有SKIPIF1<0個(gè),則第SKIPIF1<0層小球的個(gè)數(shù)為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<029.(2022秋·河北唐山·高三開灤第二中學(xué)??计谥校┮阎獢?shù)列SKIPIF1<0,對(duì)于任意正整數(shù)SKIPIF1<0,都滿足SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<030.(2022秋·云南·高三云南師大附中校聯(lián)考階段練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,若SKIPIF1<0表示不超過SKIPIF1<0的最大整數(shù)(例如SKIPIF1<0,SKIPIF1<0),則SKIPIF1<0(

)A.2019 B.2020 C.2021 D.2022二、多選題31.(2023·湖北·宜昌市一中校聯(lián)考模擬預(yù)測(cè))已知遞增的正整數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0.以下條件能得出SKIPIF1<0為等差數(shù)列的有(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<032.(2023·全國(guó)·高三專題練習(xí))數(shù)列SKIPIF1<0的通項(xiàng)為SKIPIF1<0,它的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,前SKIPIF1<0項(xiàng)積為SKIPIF1<0,則下列說法正確的是(

)A.?dāng)?shù)列SKIPIF1<0是遞減數(shù)列 B.當(dāng)SKIPIF1<0或者SKIPIF1<0時(shí),SKIPIF1<0有最大值C.當(dāng)SKIPIF1<0或者SKIPIF1<0時(shí),SKIPIF1<0有最大值 D.SKIPIF1<0和SKIPIF1<0都沒有最小值33.(2023·全國(guó)·高三專題練習(xí))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則下列結(jié)論正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0是等比數(shù)列C.SKIPIF1<0是單調(diào)遞增數(shù)列 D.SKIPIF1<034.(2023秋·云南曲靖·高三曲靖一中校考階段練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,其中SKIPIF1<0,則下列四個(gè)結(jié)論中,正確的是(

)A.SKIPIF1<0的值為2B.?dāng)?shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0C.?dāng)?shù)列SKIPIF1<0為遞減數(shù)列D.SKIPIF1<035.(2022秋·河北唐山·高三開灤第二中學(xué)??茧A段練習(xí))2022年第二十四屆北京冬奧會(huì)開幕式上由96片小雪花組成的大雪花驚艷了全世界,數(shù)學(xué)中也有一朵美麗的雪花——“科赫雪花”.它的繪制規(guī)則是:任意畫一個(gè)正三角形SKIPIF1<0,并把每一條邊三等分,以三等分后的每邊的中間一段為邊向外作正三角形,并把這“中間一段”擦掉,形成雪花曲線SKIPIF1<0.重復(fù)上述兩步,畫出更小的三角形,一直重復(fù),直到無窮,形成雪花曲線SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,….設(shè)雪花曲線SKIPIF1<0的邊長(zhǎng)為SKIPIF1<0,邊數(shù)為SKIPIF1<0,周長(zhǎng)為SKIPIF1<0,面積為SKIPIF1<0.若SKIPIF1<0,則下列說法不正確的是(

).A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<036.(2022秋·江蘇南京·高三校考期末)“太極生兩儀,兩儀生四象,四象生八卦……..”.大衍數(shù)列,來源于《乾坤譜》中對(duì)《易傳》“大衍之?dāng)?shù)五十”的推論,主要用于解釋中國(guó)傳統(tǒng)文化中的太極衍生原理,是中華傳統(tǒng)文化中隱藏著的世界數(shù)學(xué)史上的一道數(shù)列題,大衍數(shù)列中的每一項(xiàng)都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和,從第一項(xiàng)起依次為0,2,4,8,12,18,24,32,40,50………..記大衍數(shù)列為SKIPIF1<0,則下列命題正確的是(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論