江西省九江一中2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第1頁(yè)
江西省九江一中2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第2頁(yè)
江西省九江一中2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第3頁(yè)
江西省九江一中2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第4頁(yè)
江西省九江一中2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江西省九江一中2025屆高三第三次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)若函數(shù)在上零點(diǎn)最多,則實(shí)數(shù)的取值范圍是()A. B. C. D.2.已知函數(shù),則不等式的解集是()A. B. C. D.3.已知復(fù)數(shù)(為虛數(shù)單位),則下列說(shuō)法正確的是()A.的虛部為 B.復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第三象限C.的共軛復(fù)數(shù) D.4.直線與拋物線C:交于A,B兩點(diǎn),直線,且l與C相切,切點(diǎn)為P,記的面積為S,則的最小值為A. B. C. D.5.已知雙曲線的左、右頂點(diǎn)分別為,點(diǎn)是雙曲線上與不重合的動(dòng)點(diǎn),若,則雙曲線的離心率為()A. B. C.4 D.26.已知雙曲線的一條漸近線方程是,則雙曲線的離心率為()A. B. C. D.7.函數(shù)的圖象大致為()A. B.C. D.8.某設(shè)備使用年限x(年)與所支出的維修費(fèi)用y(萬(wàn)元)的統(tǒng)計(jì)數(shù)據(jù)分別為,,,,由最小二乘法得到回歸直線方程為,若計(jì)劃維修費(fèi)用超過(guò)15萬(wàn)元將該設(shè)備報(bào)廢,則該設(shè)備的使用年限為()A.8年 B.9年 C.10年 D.11年9.過(guò)雙曲線的左焦點(diǎn)作傾斜角為的直線,若與軸的交點(diǎn)坐標(biāo)為,則該雙曲線的標(biāo)準(zhǔn)方程可能為()A. B. C. D.10.若,,,則()A. B.C. D.11.已知焦點(diǎn)為的拋物線的準(zhǔn)線與軸交于點(diǎn),點(diǎn)在拋物線上,則當(dāng)取得最大值時(shí),直線的方程為()A.或 B.或 C.或 D.12.是平面上的一定點(diǎn),是平面上不共線的三點(diǎn),動(dòng)點(diǎn)滿足,,則動(dòng)點(diǎn)的軌跡一定經(jīng)過(guò)的()A.重心 B.垂心 C.外心 D.內(nèi)心二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與圓心為的圓相交于兩點(diǎn),且,則實(shí)數(shù)的值為_________.14.過(guò)點(diǎn),且圓心在直線上的圓的半徑為__________.15.雙曲線的左焦點(diǎn)為,點(diǎn),點(diǎn)P為雙曲線右支上的動(dòng)點(diǎn),且周長(zhǎng)的最小值為8,則雙曲線的實(shí)軸長(zhǎng)為________,離心率為________.16.某四棱錐的三視圖如圖所示,那么此四棱錐的體積為______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)函數(shù)f(x)=|x﹣a|+|x|(a>0).(1)若不等式f(x)﹣|x|≥4x的解集為{x|x≤1},求實(shí)數(shù)a的值;(2)證明:f(x).18.(12分)已知函數(shù),.(1)若函數(shù)在上單調(diào)遞減,且函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的值;(2)求證:(,且).19.(12分)已知公差不為零的等差數(shù)列的前n項(xiàng)和為,,是與的等比中項(xiàng).(1)求;(2)設(shè)數(shù)列滿足,,求數(shù)列的通項(xiàng)公式.20.(12分)已知是遞增的等比數(shù)列,,且、、成等差數(shù)列.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè),,求數(shù)列的前項(xiàng)和.21.(12分)已知直線的參數(shù)方程:(為參數(shù))和圓的極坐標(biāo)方程:(1)將直線的參數(shù)方程化為普通方程,圓的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)已知點(diǎn),直線與圓相交于、兩點(diǎn),求的值.22.(10分)如圖,是正方形,點(diǎn)在以為直徑的半圓弧上(不與,重合),為線段的中點(diǎn),現(xiàn)將正方形沿折起,使得平面平面.(1)證明:平面.(2)三棱錐的體積最大時(shí),求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

將函數(shù)的零點(diǎn)個(gè)數(shù)問(wèn)題轉(zhuǎn)化為函數(shù)與直線的交點(diǎn)的個(gè)數(shù)問(wèn)題,畫出函數(shù)的圖象,易知直線過(guò)定點(diǎn),故與在時(shí)的圖象必有兩個(gè)交點(diǎn),故只需與在時(shí)的圖象有兩個(gè)交點(diǎn),再與切線問(wèn)題相結(jié)合,即可求解.【詳解】由圖知與有個(gè)公共點(diǎn)即可,即,當(dāng)設(shè)切點(diǎn),則,.故選:D.【點(diǎn)睛】本題考查了函數(shù)的零點(diǎn)個(gè)數(shù)的問(wèn)題,曲線的切線問(wèn)題,注意運(yùn)用轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于較難的壓軸題.2、B【解析】

由導(dǎo)數(shù)確定函數(shù)的單調(diào)性,利用函數(shù)單調(diào)性解不等式即可.【詳解】函數(shù),可得,時(shí),,單調(diào)遞增,∵,故不等式的解集等價(jià)于不等式的解集..∴.故選:B.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性,根據(jù)單調(diào)性解不等式,屬于中檔題.3、D【解析】

利用的周期性先將復(fù)數(shù)化簡(jiǎn)為即可得到答案.【詳解】因?yàn)?,,,所以的周期?,故,故的虛部為2,A錯(cuò)誤;在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,在第二象限,B錯(cuò)誤;的共軛復(fù)數(shù)為,C錯(cuò)誤;,D正確.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,涉及到復(fù)數(shù)的虛部、共軛復(fù)數(shù)、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模等知識(shí),是一道基礎(chǔ)題.4、D【解析】

設(shè)出坐標(biāo),聯(lián)立直線方程與拋物線方程,利用弦長(zhǎng)公式求得,再由點(diǎn)到直線的距離公式求得到的距離,得到的面積為,作差后利用導(dǎo)數(shù)求最值.【詳解】設(shè),,聯(lián)立,得則,則由,得設(shè),則,則點(diǎn)到直線的距離從而.令當(dāng)時(shí),;當(dāng)時(shí),故,即的最小值為本題正確選項(xiàng):【點(diǎn)睛】本題考查直線與拋物線位置關(guān)系的應(yīng)用,考查利用導(dǎo)數(shù)求最值的問(wèn)題.解決圓錐曲線中的面積類最值問(wèn)題,通常采用構(gòu)造函數(shù)關(guān)系的方式,然后結(jié)合導(dǎo)數(shù)或者利用函數(shù)值域的方法來(lái)求解最值.5、D【解析】

設(shè),,,根據(jù)可得①,再根據(jù)又②,由①②可得,化簡(jiǎn)可得,即可求出離心率.【詳解】解:設(shè),,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故選:D.【點(diǎn)睛】本題考查雙曲線的方程和性質(zhì),考查了斜率的計(jì)算,離心率的求法,屬于基礎(chǔ)題和易錯(cuò)題.6、D【解析】雙曲線的漸近線方程是,所以,即,,即,,故選D.7、A【解析】

確定函數(shù)在定義域內(nèi)的單調(diào)性,計(jì)算時(shí)的函數(shù)值可排除三個(gè)選項(xiàng).【詳解】時(shí),函數(shù)為減函數(shù),排除B,時(shí),函數(shù)也是減函數(shù),排除D,又時(shí),,排除C,只有A可滿足.故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,可通過(guò)解析式研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對(duì)稱性等等排除,可通過(guò)特殊的函數(shù)值,函數(shù)值的正負(fù),函數(shù)值的變化趨勢(shì)排除,最后剩下的一個(gè)即為正確選項(xiàng).8、D【解析】

根據(jù)樣本中心點(diǎn)在回歸直線上,求出,求解,即可求出答案.【詳解】依題意在回歸直線上,,由,估計(jì)第年維修費(fèi)用超過(guò)15萬(wàn)元.故選:D.【點(diǎn)睛】本題考查回歸直線過(guò)樣本中心點(diǎn)、以及回歸方程的應(yīng)用,屬于基礎(chǔ)題.9、A【解析】

直線的方程為,令,得,得到a,b的關(guān)系,結(jié)合選項(xiàng)求解即可【詳解】直線的方程為,令,得.因?yàn)?,所以,只有選項(xiàng)滿足條件.故選:A【點(diǎn)睛】本題考查直線與雙曲線的位置關(guān)系以及雙曲線的標(biāo)準(zhǔn)方程,考查運(yùn)算求解能力.10、C【解析】

利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性比較、、三個(gè)數(shù)與和的大小關(guān)系,進(jìn)而可得出、、三個(gè)數(shù)的大小關(guān)系.【詳解】對(duì)數(shù)函數(shù)為上的增函數(shù),則,即;指數(shù)函數(shù)為上的增函數(shù),則;指數(shù)函數(shù)為上的減函數(shù),則.綜上所述,.故選:C.【點(diǎn)睛】本題考查指數(shù)冪與對(duì)數(shù)式的大小比較,一般利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性結(jié)合中間值法來(lái)比較,考查推理能力,屬于基礎(chǔ)題.11、A【解析】

過(guò)作與準(zhǔn)線垂直,垂足為,利用拋物線的定義可得,要使最大,則應(yīng)最大,此時(shí)與拋物線相切,再用判別式或?qū)?shù)計(jì)算即可.【詳解】過(guò)作與準(zhǔn)線垂直,垂足為,,則當(dāng)取得最大值時(shí),最大,此時(shí)與拋物線相切,易知此時(shí)直線的斜率存在,設(shè)切線方程為,則.則,則直線的方程為.故選:A.【點(diǎn)睛】本題考查直線與拋物線的位置關(guān)系,涉及到拋物線的定義,考查學(xué)生轉(zhuǎn)化與化歸的思想,是一道中檔題.12、B【解析】

解出,計(jì)算并化簡(jiǎn)可得出結(jié)論.【詳解】λ(),∴,∴,即點(diǎn)P在BC邊的高上,即點(diǎn)P的軌跡經(jīng)過(guò)△ABC的垂心.故選B.【點(diǎn)睛】本題考查了平面向量的數(shù)量積運(yùn)算在幾何中的應(yīng)用,根據(jù)條件中的角計(jì)算是關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、0或6【解析】

計(jì)算得到圓心,半徑,根據(jù)得到,利用圓心到直線的距離公式解得答案.【詳解】,即,圓心,半徑.,故圓心到直線的距離為,即,故或.故答案為:或.【點(diǎn)睛】本題考查了根據(jù)直線和圓的位置關(guān)系求參數(shù),意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力。14、【解析】

根據(jù)弦的垂直平分線經(jīng)過(guò)圓心,結(jié)合圓心所在直線方程,即可求得圓心坐標(biāo).由兩點(diǎn)間距離公式,即可得半徑.【詳解】因?yàn)閳A經(jīng)過(guò)點(diǎn)則直線的斜率為所以與直線垂直的方程斜率為點(diǎn)的中點(diǎn)坐標(biāo)為所以由點(diǎn)斜式可得直線垂直平分線的方程為,化簡(jiǎn)可得而弦的垂直平分線經(jīng)過(guò)圓心,且圓心在直線上,設(shè)圓心所以圓心滿足解得所以圓心坐標(biāo)為則圓的半徑為故答案為:【點(diǎn)睛】本題考查了直線垂直時(shí)的斜率關(guān)系,直線與直線交點(diǎn)的求法,直線與圓的位置關(guān)系,圓的半徑的求法,屬于基礎(chǔ)題.15、22【解析】

設(shè)雙曲線的右焦點(diǎn)為,根據(jù)周長(zhǎng)為,計(jì)算得到答案.【詳解】設(shè)雙曲線的右焦點(diǎn)為.周長(zhǎng)為:.當(dāng)共線時(shí)等號(hào)成立,故,即實(shí)軸長(zhǎng)為,.故答案為:;.【點(diǎn)睛】本題考查雙曲線周長(zhǎng)的最值問(wèn)題,離心率,實(shí)軸長(zhǎng),意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.16、【解析】

利用三視圖判斷幾何體的形狀,然后通過(guò)三視圖的數(shù)據(jù)求解幾何體的體積.【詳解】如圖:此四棱錐的高為,底面是長(zhǎng)為,寬為2的矩形,所以體積.所以本題答案為.【點(diǎn)睛】本題考查幾何體與三視圖的對(duì)應(yīng)關(guān)系,幾何體體積的求法,考查空間想象能力與計(jì)算能力.解決本類題目的關(guān)鍵是準(zhǔn)確理解幾何體的定義,真正把握幾何體的結(jié)構(gòu)特征,可以根據(jù)條件構(gòu)建幾何模型,在幾何模型中進(jìn)行判斷.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)a=1;(2)見解析【解析】

(1)由題意可得|x﹣a|≥4x,分類討論去掉絕對(duì)值,分別求得x的范圍即可求出a的值.(2)由條件利用絕對(duì)值三角不等式,基本不等式證得f(x)≥2..【詳解】(1)由f(x)﹣|x|≥4x,可得|x﹣a|≥4x,(a>0),當(dāng)x≥a時(shí),x﹣a≥4x,解得x,這與x≥a>0矛盾,故不成立,當(dāng)x<a時(shí),a﹣x≥4x,解得x,又不等式的解集是{x|x≤1},故1,解得a=1.(2)證明:f(x)=|x﹣a|+|x||x﹣a﹣(x)|=|a|,∵a>0,∴|a|=a22,當(dāng)且僅當(dāng)a時(shí)取等號(hào),故f(x).【點(diǎn)睛】本題主要考查絕對(duì)值三角不等式,基本不等式,絕對(duì)值不等式的解法,體現(xiàn)了轉(zhuǎn)化、分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.18、(1)1;(2)見解析【解析】

(1)分別求得與的導(dǎo)函數(shù),由導(dǎo)函數(shù)與單調(diào)性關(guān)系即可求得的值;(2)由(1)可知當(dāng)時(shí),,當(dāng)時(shí),,因而,構(gòu)造,由對(duì)數(shù)運(yùn)算及不等式放縮可證明,從而不等式可證明.【詳解】(1)∵函數(shù)在上單調(diào)遞減,∴,即在上恒成立,∴,又∵函數(shù)在上單調(diào)遞增,∴,即在上恒成立,,∴綜上可知,.(2)證明:由(1)知,當(dāng)時(shí),函數(shù)在上為減函數(shù),在上為增函數(shù),而,∴當(dāng)時(shí),,當(dāng)時(shí),.∴∴即,∴.【點(diǎn)睛】本題考查了導(dǎo)數(shù)與函數(shù)單調(diào)性關(guān)系,放縮法在證明不等式中的應(yīng)用,屬于難題.19、(1);(2).【解析】

(1)根據(jù)題意,建立首項(xiàng)和公差的方程組,通過(guò)基本量即可寫出前項(xiàng)和;(2)由(1)中所求,結(jié)合累加法求得.【詳解】(1)由題意可得即又因?yàn)椋?,所?(2)由條件及(1)可得.由已知得,所以.又滿足上式,所以【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式和前項(xiàng)和的基本量的求解,涉及利用累加法求通項(xiàng)公式,屬綜合基礎(chǔ)題.20、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)設(shè)等比數(shù)列的公比為,根據(jù)題中條件求出的值,結(jié)合等比數(shù)列的通項(xiàng)公式可得出數(shù)列的通項(xiàng)公式;(Ⅱ)求得,然后利用裂項(xiàng)相消法可求得.【詳解】(Ⅰ)設(shè)數(shù)列的公比為,由題意及,知.、、成等差數(shù)列成等差數(shù)列,,,即,解得或(舍去),.數(shù)列的通項(xiàng)公式為;(Ⅱ),.【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)的求解,同時(shí)也考查了裂項(xiàng)求和法,考查計(jì)算能力,屬于基礎(chǔ)題.21、(1):,:;(2)【解析】

(1)消去參數(shù)求得直線的普通方程,將兩邊同乘以,化簡(jiǎn)求得圓的直角坐標(biāo)方程.(2)求得直線的標(biāo)準(zhǔn)參數(shù)方程,代入圓的直角坐標(biāo)方程,化簡(jiǎn)后寫出韋達(dá)定理,根據(jù)直線參數(shù)的幾何意義,求得的值.【詳解】(1)消去參數(shù),得直線的普通方程為,將兩邊同乘以得,,∴圓的直角坐標(biāo)方程為;(2)經(jīng)檢驗(yàn)點(diǎn)在直線上,可轉(zhuǎn)化為①,將①式代入圓的直角坐標(biāo)方程為得,化簡(jiǎn)得,設(shè)是方程的兩根,則,,∵,∴與同號(hào),由的幾何意義得.【點(diǎn)睛】本小題主要考查參數(shù)方程化為普通方程、極坐標(biāo)方程化為直角坐標(biāo)方程,考查利用直線參數(shù)的幾何意義求解距離問(wèn)題,屬于中檔題.22、(1)見解析(2)【解析】

(1)利用面面垂直的性質(zhì)定理證得平面,由此證得,根據(jù)圓的幾何性質(zhì)證得,由此證得平面.(2)判斷出三棱錐的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論