版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
福州七中2025屆高三3月份第一次模擬考試數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)在上的圖象大致為()A. B.C. D.2.已知函,,則的最小值為()A. B.1 C.0 D.3.函數(shù)在上的大致圖象是()A. B.C. D.4.已知水平放置的△ABC是按“斜二測(cè)畫法”得到如圖所示的直觀圖,其中B′O′=C′O′=1,A′O′=,那么原△ABC的面積是()A. B.2C. D.5.已知點(diǎn)是拋物線的對(duì)稱軸與準(zhǔn)線的交點(diǎn),點(diǎn)為拋物線的焦點(diǎn),點(diǎn)在拋物線上且滿足,若取得最大值時(shí),點(diǎn)恰好在以為焦點(diǎn)的橢圓上,則橢圓的離心率為()A. B. C. D.6.已知是邊長為1的等邊三角形,點(diǎn),分別是邊,的中點(diǎn),連接并延長到點(diǎn),使得,則的值為()A. B. C. D.7.公差不為零的等差數(shù)列{an}中,a1+a2+a5=13,且a1、a2、a5成等比數(shù)列,則數(shù)列{an}的公差等于()A.1 B.2 C.3 D.48.已知實(shí)數(shù),,函數(shù)在上單調(diào)遞增,則實(shí)數(shù)的取值范圍是()A. B. C. D.9.一個(gè)圓錐的底面和一個(gè)半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個(gè)圓錐軸截面底角的大小是()A. B. C. D.10.中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書”,指各種歷史文化知識(shí);“數(shù)”,指數(shù)學(xué).某校國學(xué)社團(tuán)開展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在第三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同的排課順序共有()A.12種 B.24種 C.36種 D.48種11.若復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二象限,則實(shí)數(shù)的取值范圍是()A. B. C. D.12.命題:存在實(shí)數(shù),對(duì)任意實(shí)數(shù),使得恒成立;:,為奇函數(shù),則下列命題是真命題的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中,的系數(shù)是______.14.已知數(shù)列滿足:,,若對(duì)任意的正整數(shù)均有,則實(shí)數(shù)的最大值是_____.15.在中,角的平分線交于,,,則面積的最大值為__________.16.給出下列等式:,,,…請(qǐng)從中歸納出第個(gè)等式:______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼谋?,縱坐標(biāo)不變,得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,射線與曲線交于點(diǎn),將射線繞極點(diǎn)逆時(shí)針方向旋轉(zhuǎn)交曲線于點(diǎn).(1)求曲線的參數(shù)方程;(2)求面積的最大值.18.(12分)已知都是各項(xiàng)不為零的數(shù)列,且滿足其中是數(shù)列的前項(xiàng)和,是公差為的等差數(shù)列.(1)若數(shù)列是常數(shù)列,,,求數(shù)列的通項(xiàng)公式;(2)若是不為零的常數(shù)),求證:數(shù)列是等差數(shù)列;(3)若(為常數(shù),),.求證:對(duì)任意的恒成立.19.(12分)眼保健操是一種眼睛的保健體操,主要是通過按摩眼部穴位,調(diào)整眼及頭部的血液循環(huán),調(diào)節(jié)肌肉,改善眼的疲勞,達(dá)到預(yù)防近視等眼部疾病的目的.某學(xué)校為了調(diào)查推廣眼保健操對(duì)改善學(xué)生視力的效果,在應(yīng)屆高三的全體800名學(xué)生中隨機(jī)抽取了100名學(xué)生進(jìn)行視力檢查,并得到如圖的頻率分布直方圖.(1)若直方圖中后三組的頻數(shù)成等差數(shù)列,試估計(jì)全年級(jí)視力在5.0以上的人數(shù);(2)為了研究學(xué)生的視力與眼保健操是否有關(guān)系,對(duì)年級(jí)不做眼保健操和堅(jiān)持做眼保健操的學(xué)生進(jìn)行了調(diào)查,得到下表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)的概率不超過0.005的前提下認(rèn)為視力與眼保健操有關(guān)系?(3)在(2)中調(diào)查的100名學(xué)生中,按照分層抽樣在不近視的學(xué)生中抽取8人,進(jìn)一步調(diào)查他們良好的護(hù)眼習(xí)慣,在這8人中任取2人,記堅(jiān)持做眼保健操的學(xué)生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.附:0.100.050.0250.0100.005k2.7063.8415.0246.6357.87920.(12分)已知.(Ⅰ)當(dāng)時(shí),解不等式;(Ⅱ)若的最小值為1,求的最小值.21.(12分)如圖,四棱錐中,平面,,,.(I)證明:;(Ⅱ)若是中點(diǎn),與平面所成的角的正弦值為,求的長.22.(10分)如圖1,在等腰梯形中,兩腰,底邊,,,是的三等分點(diǎn),是的中點(diǎn).分別沿,將四邊形和折起,使,重合于點(diǎn),得到如圖2所示的幾何體.在圖2中,,分別為,的中點(diǎn).(1)證明:平面.(2)求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
首先判斷函數(shù)的奇偶性,再根據(jù)特殊值即可利用排除法解得;【詳解】解:依題意,,故函數(shù)為偶函數(shù),圖象關(guān)于軸對(duì)稱,排除C;而,排除B;,排除D.故選:.【點(diǎn)睛】本題考查函數(shù)圖象的識(shí)別,函數(shù)的奇偶性的應(yīng)用,屬于基礎(chǔ)題.2、B【解析】
,利用整體換元法求最小值.【詳解】由已知,又,,故當(dāng),即時(shí),.故選:B.【點(diǎn)睛】本題考查整體換元法求正弦型函數(shù)的最值,涉及到二倍角公式的應(yīng)用,是一道中檔題.3、D【解析】
討論的取值范圍,然后對(duì)函數(shù)進(jìn)行求導(dǎo),利用導(dǎo)數(shù)的幾何意義即可判斷.【詳解】當(dāng)時(shí),,則,所以函數(shù)在上單調(diào)遞增,令,則,根據(jù)三角函數(shù)的性質(zhì),當(dāng)時(shí),,故切線的斜率變小,當(dāng)時(shí),,故切線的斜率變大,可排除A、B;當(dāng)時(shí),,則,所以函數(shù)在上單調(diào)遞增,令,,當(dāng)時(shí),,故切線的斜率變大,當(dāng)時(shí),,故切線的斜率變小,可排除C,故選:D【點(diǎn)睛】本題考查了識(shí)別函數(shù)的圖像,考查了導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系以及導(dǎo)數(shù)的幾何意義,屬于中檔題.4、A【解析】
先根據(jù)已知求出原△ABC的高為AO=,再求原△ABC的面積.【詳解】由題圖可知原△ABC的高為AO=,∴S△ABC=×BC×OA=×2×=,故答案為A【點(diǎn)睛】本題主要考查斜二測(cè)畫法的定義和三角形面積的計(jì)算,意在考察學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.5、B【解析】
設(shè),利用兩點(diǎn)間的距離公式求出的表達(dá)式,結(jié)合基本不等式的性質(zhì)求出的最大值時(shí)的點(diǎn)坐標(biāo),結(jié)合橢圓的定義以及橢圓的離心率公式求解即可.【詳解】設(shè),因?yàn)槭菕佄锞€的對(duì)稱軸與準(zhǔn)線的交點(diǎn),點(diǎn)為拋物線的焦點(diǎn),所以,則,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí),,點(diǎn)在以為焦點(diǎn)的橢圓上,,由橢圓的定義得,所以橢圓的離心率,故選B.【點(diǎn)睛】本題主要考查橢圓的定義及離心率,屬于難題.離心率的求解在圓錐曲線的考查中是一個(gè)重點(diǎn)也是難點(diǎn),一般求離心率有以下幾種情況:①直接求出,從而求出;②構(gòu)造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來求解.6、D【解析】
設(shè),,作為一個(gè)基底,表示向量,,,然后再用數(shù)量積公式求解.【詳解】設(shè),,所以,,,所以.故選:D【點(diǎn)睛】本題主要考查平面向量的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.7、B【解析】
設(shè)數(shù)列的公差為.由,成等比數(shù)列,列關(guān)于的方程組,即求公差.【詳解】設(shè)數(shù)列的公差為,①.成等比數(shù)列,②,解①②可得.故選:.【點(diǎn)睛】本題考查等差數(shù)列基本量的計(jì)算,屬于基礎(chǔ)題.8、D【解析】
根據(jù)題意,對(duì)于函數(shù)分2段分析:當(dāng),由指數(shù)函數(shù)的性質(zhì)分析可得①,當(dāng),由導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系可得,在上恒成立,變形可得②,再結(jié)合函數(shù)的單調(diào)性,分析可得③,聯(lián)立三個(gè)式子,分析可得答案.【詳解】解:根據(jù)題意,函數(shù)在上單調(diào)遞增,
當(dāng),若為增函數(shù),則①,
當(dāng),若為增函數(shù),必有在上恒成立,
變形可得:,
又由,可得在上單調(diào)遞減,則,
若在上恒成立,則有②,
若函數(shù)在上單調(diào)遞增,左邊一段函數(shù)的最大值不能大于右邊一段函數(shù)的最小值,則需有,③
聯(lián)立①②③可得:.
故選:D.【點(diǎn)睛】本題考查函數(shù)單調(diào)性的性質(zhì)以及應(yīng)用,注意分段函數(shù)單調(diào)性的性質(zhì).9、D【解析】
設(shè)圓錐的母線長為l,底面半徑為R,再表達(dá)圓錐表面積與球的表面積公式,進(jìn)而求得即可得圓錐軸截面底角的大小.【詳解】設(shè)圓錐的母線長為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D【點(diǎn)睛】本題考查圓錐的表面積和球的表面積公式,屬于基礎(chǔ)題.10、C【解析】
根據(jù)“數(shù)”排在第三節(jié),則“射”和“御”兩門課程相鄰有3類排法,再考慮兩者的順序,有種,剩余的3門全排列,即可求解.【詳解】由題意,“數(shù)”排在第三節(jié),則“射”和“御”兩門課程相鄰時(shí),可排在第1節(jié)和第2節(jié)或第4節(jié)和第5節(jié)或第5節(jié)和第6節(jié),有3種,再考慮兩者的順序,有種,剩余的3門全排列,安排在剩下的3個(gè)位置,有種,所以“六藝”課程講座不同的排課順序共有種不同的排法.故選:C.【點(diǎn)睛】本題主要考查了排列、組合的應(yīng)用,其中解答中認(rèn)真審題,根據(jù)題設(shè)條件,先排列有限制條件的元素是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.11、B【解析】
復(fù)數(shù),在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二象限,可得關(guān)于a的不等式組,解得a的范圍.【詳解】,由其在復(fù)平面對(duì)應(yīng)的點(diǎn)在第二象限,得,則.故選:B.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義、不等式的解法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.12、A【解析】
分別判斷命題和的真假性,然后根據(jù)含有邏輯聯(lián)結(jié)詞命題的真假性判斷出正確選項(xiàng).【詳解】對(duì)于命題,由于,所以命題為真命題.對(duì)于命題,由于,由解得,且,所以是奇函數(shù),故為真命題.所以為真命題.、、都是假命題.故選:A【點(diǎn)睛】本小題主要考查誘導(dǎo)公式,考查函數(shù)的奇偶性,考查含有邏輯聯(lián)結(jié)詞命題真假性的判斷,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先將原式展開成,發(fā)現(xiàn)中不含,故只研究后面一項(xiàng)即可得解.【詳解】,依題意,只需求中的系數(shù),是.故答案為:-40【點(diǎn)睛】本題考查二項(xiàng)式定理性質(zhì),關(guān)鍵是先展開再利用排列組合思想解決,屬于基礎(chǔ)題.14、2【解析】
根據(jù)遞推公式可考慮分析,再累加求出關(guān)于關(guān)于參數(shù)的關(guān)系,根據(jù)表達(dá)式的取值分析出,再用數(shù)學(xué)歸納法證明滿足條件即可.【詳解】因?yàn)?累加可得.若,注意到當(dāng)時(shí),,不滿足對(duì)任意的正整數(shù)均有.所以.當(dāng)時(shí),證明:對(duì)任意的正整數(shù)都有.當(dāng)時(shí),成立.假設(shè)當(dāng)時(shí)結(jié)論成立,即,則,即結(jié)論對(duì)也成立.由數(shù)學(xué)歸納法可知,對(duì)任意的正整數(shù)都有.綜上可知,所求實(shí)數(shù)的最大值是2.故答案為:2【點(diǎn)睛】本題主要考查了根據(jù)數(shù)列的遞推公式求解參數(shù)最值的問題,需要根據(jù)遞推公式累加求解,同時(shí)注意結(jié)合參數(shù)的范圍問題進(jìn)行分析.屬于難題.15、15【解析】
由角平分線定理得,利用余弦定理和三角形面積公式,借助三角恒等變化求出面積的最大值.【詳解】畫出圖形:因?yàn)?,,由角平分線定理得,設(shè),則由余弦定理得:即當(dāng)且僅當(dāng),即時(shí)取等號(hào)所以面積的最大值為15故答案為:15【點(diǎn)睛】此題考查解三角形面積的最值問題,通過三角恒等變形后利用均值不等式處理,屬于一般性題目.16、【解析】
通過已知的三個(gè)等式,找出規(guī)律,歸納出第個(gè)等式即可.【詳解】解:因?yàn)椋?,,,等式的右邊系?shù)是2,且角是等比數(shù)列,公比為,則角滿足:第個(gè)等式中的角,所以;故答案為:.【點(diǎn)睛】本題主要考查歸納推理,注意已知表達(dá)式的特征是解題的關(guān)鍵,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(為參數(shù));(2).【解析】
(1)根據(jù)伸縮變換結(jié)合曲線的參數(shù)方程可得出曲線的參數(shù)方程;(2)將曲線的方程化為普通方程,然后化為極坐標(biāo)方程,設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)的極坐標(biāo)為,將這兩點(diǎn)的極坐標(biāo)代入橢圓的極坐標(biāo)方程,得出和關(guān)于的表達(dá)式,然后利用三角恒等變換思想即可求出面積的最大值.【詳解】(1)由于曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼谋?,縱坐標(biāo)不變,得到曲線,則曲線的參數(shù)方程為(為參數(shù));(2)將曲線的參數(shù)方程化為普通方程得,化為極坐標(biāo)方程得,即,設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)的極坐標(biāo)為,將這兩點(diǎn)的極坐標(biāo)代入橢圓的極坐標(biāo)方程得,,的面積為,當(dāng)時(shí),的面積取到最大值.【點(diǎn)睛】本題考查參數(shù)方程、極坐標(biāo)方程與普通方程的互化,考查了伸縮變換,同時(shí)也考查了利用極坐標(biāo)方程求解三角形面積的最值問題,要熟悉極坐標(biāo)方程所適用的基本類型,考查分析問題和解決問題的能力,屬于中等題.18、(1);(2)詳見解析;(3)詳見解析.【解析】
(1)根據(jù),可求得,再根據(jù)是常數(shù)列代入根據(jù)通項(xiàng)與前項(xiàng)和的關(guān)系求解即可.(2)取,并結(jié)合通項(xiàng)與前項(xiàng)和的關(guān)系可求得再根據(jù)化簡(jiǎn)可得,代入化簡(jiǎn)即可知,再證明也成立即可.(3)由(2)當(dāng)時(shí),,代入所給的條件化簡(jiǎn)可得,進(jìn)而證明可得,即數(shù)列是等比數(shù)列.繼而求得,再根據(jù)作商法證明即可.【詳解】解:.是各項(xiàng)不為零的常數(shù)列,則,則由,及得,當(dāng)時(shí),,兩式作差,可得.當(dāng)時(shí),滿足上式,則;證明:,當(dāng)時(shí),,兩式相減得:即.即.又,,即.當(dāng)時(shí),,兩式相減得:.?dāng)?shù)列從第二項(xiàng)起是公差為的等差數(shù)列.又當(dāng)時(shí),由得,當(dāng)時(shí),由,得.故數(shù)列是公差為的等差數(shù)列;證明:由,當(dāng)時(shí),,即,,,即,即,當(dāng)時(shí),即.故從第二項(xiàng)起數(shù)列是等比數(shù)列,當(dāng)時(shí),..另外,由已知條件可得,又,,因而.令,則.故對(duì)任意的恒成立.【點(diǎn)睛】本題主要考查了等差等比數(shù)列的綜合運(yùn)用,需要熟練運(yùn)用通項(xiàng)與前項(xiàng)和的關(guān)系分析數(shù)列的遞推公式繼而求解通項(xiàng)公式或證明等差數(shù)列等.同時(shí)也考查了數(shù)列中的不等式證明等,需要根據(jù)題意分析數(shù)列為等比數(shù)列并求出通項(xiàng),再利用作商法證明.屬于難題.19、(1)(2)能在犯錯(cuò)誤的概率不超過0.005的前提下認(rèn)為視力與眼保健操有關(guān)系(3)詳見解析【解析】
(1)由題意可計(jì)算后三組的頻數(shù)的總數(shù),由其成等差數(shù)列可得后三組頻數(shù),可得視力在5.0以上的頻率,可得全年級(jí)視力在5.0以上的的人數(shù);(2)由題中數(shù)據(jù)計(jì)算的值,對(duì)照臨界值表可得答案;(3)由題意可計(jì)算出這8人中不做眼保健操和堅(jiān)持做眼保健操的分別有2人和6人,可得X可取0,1,2,分別計(jì)算出其概率,列出分布列,可得其數(shù)學(xué)期望.【詳解】解:(1)由圖可知,第一組有3人,第二組7人,第三組27人,因?yàn)楹笕M的頻數(shù)成等差數(shù)列,共有(人)所以后三組頻數(shù)依次為24,21,18,所以視力在5.0以上的頻率為0.18,故全年級(jí)視力在5.0以上的的人數(shù)約為人(2),因此能在犯錯(cuò)誤的概率不超過0.005的前提下認(rèn)為視力與眼保健操有關(guān)系.(3)調(diào)查的100名學(xué)生中不近視的共有24人,從中抽取8人,抽樣比為,這8人中不做眼保健操和堅(jiān)持做眼保健操的分別有2人和6人,X可取0,1,2,,X的分布列X012PX的數(shù)學(xué)期望.【點(diǎn)睛】本題主要考查頻率分布直方圖,獨(dú)立性檢測(cè)及離散型隨機(jī)變量的期望與方差等相關(guān)知識(shí),考查學(xué)生分析數(shù)據(jù)與處理數(shù)據(jù)的能力,屬于中檔題.20、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)當(dāng)時(shí),令,作出的圖像,結(jié)合圖像即可求解;(Ⅱ)結(jié)合絕對(duì)值三角不等式可得,再由“1”的妙用可拼湊為,結(jié)合基本不等式即可求解;【詳解】(Ⅰ)令,作出它們的大致圖像如下:由或(舍),得點(diǎn)橫坐標(biāo)為2,由對(duì)稱性知,點(diǎn)橫坐標(biāo)為﹣2,因此不等式的解集為.(Ⅱ)..取等號(hào)的條件為,即,聯(lián)立得因此的最小值為.【點(diǎn)睛
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度餐飲企業(yè)外賣配送服務(wù)合同6篇
- 2025年度生物制藥研發(fā)與生產(chǎn)合同模板3篇
- 二零二五年度智能化別墅建造及智能化系統(tǒng)采購合同3篇
- 《養(yǎng)老機(jī)構(gòu)服務(wù)合同》示范文本
- 違法分包對(duì)揭陽匯金中心C項(xiàng)目影響評(píng)估合同(2025版)3篇
- 2025年網(wǎng)絡(luò)平臺(tái)肖像權(quán)授權(quán)使用合同3篇
- 二零二五年度蟲草資源保護(hù)與可持續(xù)利用合同范本3篇
- 2024私人之間的房屋買賣合同樣本
- 2024腳手架工程安全施工與技術(shù)服務(wù)協(xié)議版
- 2025年度智慧城市安全監(jiān)控系統(tǒng)設(shè)備采購合同2篇
- 橫格紙A4打印模板
- CT設(shè)備維保服務(wù)售后服務(wù)方案
- 重癥血液凈化血管通路的建立與應(yīng)用中國專家共識(shí)(2023版)
- 兒科課件:急性細(xì)菌性腦膜炎
- 柜類家具結(jié)構(gòu)設(shè)計(jì)課件
- 陶瓷瓷磚企業(yè)(陶瓷廠)全套安全生產(chǎn)操作規(guī)程
- 煤炭運(yùn)輸安全保障措施提升運(yùn)輸安全保障措施
- JTGT-3833-2018-公路工程機(jī)械臺(tái)班費(fèi)用定額
- 保安巡邏線路圖
- (完整版)聚乙烯課件
- 建筑垃圾資源化綜合利用項(xiàng)目可行性實(shí)施方案
評(píng)論
0/150
提交評(píng)論