河北省邯鄲市雞澤縣第一中學(xué)2025屆高考沖刺數(shù)學(xué)模擬試題含解析_第1頁
河北省邯鄲市雞澤縣第一中學(xué)2025屆高考沖刺數(shù)學(xué)模擬試題含解析_第2頁
河北省邯鄲市雞澤縣第一中學(xué)2025屆高考沖刺數(shù)學(xué)模擬試題含解析_第3頁
河北省邯鄲市雞澤縣第一中學(xué)2025屆高考沖刺數(shù)學(xué)模擬試題含解析_第4頁
河北省邯鄲市雞澤縣第一中學(xué)2025屆高考沖刺數(shù)學(xué)模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

河北省邯鄲市雞澤縣第一中學(xué)2025屆高考沖刺數(shù)學(xué)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.拋物線的焦點(diǎn)為F,點(diǎn)為該拋物線上的動點(diǎn),若點(diǎn),則的最小值為()A. B. C. D.2.過圓外一點(diǎn)引圓的兩條切線,則經(jīng)過兩切點(diǎn)的直線方程是().A. B. C. D.3.已知等差數(shù)列的前項(xiàng)和為,若,則等差數(shù)列公差()A.2 B. C.3 D.44.設(shè)函數(shù),的定義域都為,且是奇函數(shù),是偶函數(shù),則下列結(jié)論正確的是()A.是偶函數(shù) B.是奇函數(shù)C.是奇函數(shù) D.是奇函數(shù)5.定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),當(dāng)x∈[﹣3,﹣2]時,f(x)=﹣x﹣2,則()A. B.f(sin3)<f(cos3)C. D.f(2020)>f(2019)6.若,,則的值為()A. B. C. D.7.已知、分別為雙曲線:(,)的左、右焦點(diǎn),過的直線交于、兩點(diǎn),為坐標(biāo)原點(diǎn),若,,則的離心率為()A.2 B. C. D.8.已知函數(shù)(其中為自然對數(shù)的底數(shù))有兩個零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.9.中國古代數(shù)學(xué)著作《孫子算經(jīng)》中有這樣一道算術(shù)題:“今有物不知其數(shù),三三數(shù)之余二,五五數(shù)之余三,問物幾何?”人們把此類題目稱為“中國剩余定理”,若正整數(shù)除以正整數(shù)后的余數(shù)為,則記為,例如.現(xiàn)將該問題以程序框圖的算法給出,執(zhí)行該程序框圖,則輸出的等于().A. B. C. D.10.一個圓錐的底面和一個半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個圓錐軸截面底角的大小是()A. B. C. D.11.圓柱被一平面截去一部分所得幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.12.已知函數(shù)是偶函數(shù),當(dāng)時,函數(shù)單調(diào)遞減,設(shè),,,則的大小關(guān)系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù)、滿足,且可行域表示的區(qū)域?yàn)槿切危瑒t實(shí)數(shù)的取值范圍為______,若目標(biāo)函數(shù)的最小值為-1,則實(shí)數(shù)等于______.14.設(shè)函數(shù),若存在實(shí)數(shù)m,使得關(guān)于x的方程有4個不相等的實(shí)根,且這4個根的平方和存在最小值,則實(shí)數(shù)a的取值范圍是______.15.已知的展開式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,則__________.16.在三棱錐中,,三角形為等邊三角形,二面角的余弦值為,當(dāng)三棱錐的體積最大值為時,三棱錐的外接球的表面積為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,求四面體的體積.18.(12分)在△ABC中,角A,B,C的對邊分別是a,b,c,.(1)求cosC;(2)若b=7,D是BC邊上的點(diǎn),且△ACD的面積為,求sin∠ADB.19.(12分)已知數(shù)列,其前項(xiàng)和為,若對于任意,,且,都有.(1)求證:數(shù)列是等差數(shù)列(2)若數(shù)列滿足,且等差數(shù)列的公差為,存在正整數(shù),使得,求的最小值.20.(12分)在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)),直線經(jīng)過點(diǎn)且傾斜角為.(1)求曲線的極坐標(biāo)方程和直線的參數(shù)方程;(2)已知直線與曲線交于,滿足為的中點(diǎn),求.21.(12分)設(shè)函數(shù),是函數(shù)的導(dǎo)數(shù).(1)若,證明在區(qū)間上沒有零點(diǎn);(2)在上恒成立,求的取值范圍.22.(10分)已知橢圓()的半焦距為,原點(diǎn)到經(jīng)過兩點(diǎn),的直線的距離為.(Ⅰ)求橢圓的離心率;(Ⅱ)如圖,是圓的一條直徑,若橢圓經(jīng)過,兩點(diǎn),求橢圓的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

通過拋物線的定義,轉(zhuǎn)化,要使有最小值,只需最大即可,作出切線方程即可求出比值的最小值.【詳解】解:由題意可知,拋物線的準(zhǔn)線方程為,,過作垂直直線于,由拋物線的定義可知,連結(jié),當(dāng)是拋物線的切線時,有最小值,則最大,即最大,就是直線的斜率最大,設(shè)在的方程為:,所以,解得:,所以,解得,所以,.故選:.【點(diǎn)睛】本題考查拋物線的基本性質(zhì),直線與拋物線的位置關(guān)系,轉(zhuǎn)化思想的應(yīng)用,屬于基礎(chǔ)題.2、A【解析】過圓外一點(diǎn),引圓的兩條切線,則經(jīng)過兩切點(diǎn)的直線方程為,故選.3、C【解析】

根據(jù)等差數(shù)列的求和公式即可得出.【詳解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故選C.【點(diǎn)睛】本題主要考查了等差數(shù)列的求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.4、C【解析】

根據(jù)函數(shù)奇偶性的性質(zhì)即可得到結(jié)論.【詳解】解:是奇函數(shù),是偶函數(shù),,,,故函數(shù)是奇函數(shù),故錯誤,為偶函數(shù),故錯誤,是奇函數(shù),故正確.為偶函數(shù),故錯誤,故選:.【點(diǎn)睛】本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性的定義是解決本題的關(guān)鍵.5、B【解析】

根據(jù)函數(shù)的周期性以及x∈[﹣3,﹣2]的解析式,可作出函數(shù)f(x)在定義域上的圖象,由此結(jié)合選項(xiàng)判斷即可.【詳解】由f(x+2)=f(x),得f(x)是周期函數(shù)且周期為2,先作出f(x)在x∈[﹣3,﹣2]時的圖象,然后根據(jù)周期為2依次平移,并結(jié)合f(x)是偶函數(shù)作出f(x)在R上的圖象如下,選項(xiàng)A,,所以,選項(xiàng)A錯誤;選項(xiàng)B,因?yàn)?,所以,所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),選項(xiàng)B正確;選項(xiàng)C,,所以,即,選項(xiàng)C錯誤;選項(xiàng)D,,選項(xiàng)D錯誤.故選:B.【點(diǎn)睛】本題考查函數(shù)性質(zhì)的綜合運(yùn)用,考查函數(shù)值的大小比較,考查數(shù)形結(jié)合思想,屬于中檔題.6、A【解析】

取,得到,取,則,計(jì)算得到答案.【詳解】取,得到;取,則.故.故選:.【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,取和是解題的關(guān)鍵.7、D【解析】

作出圖象,取AB中點(diǎn)E,連接EF2,設(shè)F1A=x,根據(jù)雙曲線定義可得x=2a,再由勾股定理可得到c2=7a2,進(jìn)而得到e的值【詳解】解:取AB中點(diǎn)E,連接EF2,則由已知可得BF1⊥EF2,F(xiàn)1A=AE=EB,設(shè)F1A=x,則由雙曲線定義可得AF2=2a+x,BF1﹣BF2=3x﹣2a﹣x=2a,所以x=2a,則EF2=2a,由勾股定理可得(4a)2+(2a)2=(2c)2,所以c2=7a2,則e故選:D.【點(diǎn)睛】本題考查雙曲線定義的應(yīng)用,考查離心率的求法,數(shù)形結(jié)合思想,屬于中檔題.對于圓錐曲線中求離心率的問題,關(guān)鍵是列出含有中兩個量的方程,有時還要結(jié)合橢圓、雙曲線的定義對方程進(jìn)行整理,從而求出離心率.8、B【解析】

求出導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,確定函數(shù)的最值,根據(jù)零點(diǎn)存在定理可確定參數(shù)范圍.【詳解】,當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,∴在上只有一個極大值也是最大值,顯然時,,時,,因此要使函數(shù)有兩個零點(diǎn),則,∴.故選:B.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn),考查用導(dǎo)數(shù)研究函數(shù)的最值,根據(jù)零點(diǎn)存在定理確定參數(shù)范圍.9、C【解析】從21開始,輸出的數(shù)是除以3余2,除以5余3,滿足條件的是23,故選C.10、D【解析】

設(shè)圓錐的母線長為l,底面半徑為R,再表達(dá)圓錐表面積與球的表面積公式,進(jìn)而求得即可得圓錐軸截面底角的大小.【詳解】設(shè)圓錐的母線長為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D【點(diǎn)睛】本題考查圓錐的表面積和球的表面積公式,屬于基礎(chǔ)題.11、B【解析】

三視圖對應(yīng)的幾何體為如圖所示的幾何體,利用割補(bǔ)法可求其體積.【詳解】根據(jù)三視圖可得原幾何體如圖所示,它是一個圓柱截去上面一塊幾何體,把該幾何體補(bǔ)成如下圖所示的圓柱,其體積為,故原幾何體的體積為.故選:B.【點(diǎn)睛】本題考查三視圖以及不規(guī)則幾何體的體積,復(fù)原幾何體時注意三視圖中的點(diǎn)線關(guān)系與幾何體中的點(diǎn)、線、面的對應(yīng)關(guān)系,另外,不規(guī)則幾何體的體積可用割補(bǔ)法來求其體積,本題屬于基礎(chǔ)題.12、A【解析】

根據(jù)圖象關(guān)于軸對稱可知關(guān)于對稱,從而得到在上單調(diào)遞增且;再根據(jù)自變量的大小關(guān)系得到函數(shù)值的大小關(guān)系.【詳解】為偶函數(shù)圖象關(guān)于軸對稱圖象關(guān)于對稱時,單調(diào)遞減時,單調(diào)遞增又且,即本題正確選項(xiàng):【點(diǎn)睛】本題考查利用函數(shù)奇偶性、對稱性和單調(diào)性比較函數(shù)值的大小關(guān)系問題,關(guān)鍵是能夠通過奇偶性和對稱性得到函數(shù)的單調(diào)性,通過自變量的大小關(guān)系求得結(jié)果.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,結(jié)合目標(biāo)函數(shù)的最小值,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出可行域如圖,則要為三角形需滿足在直線下方,即,;目標(biāo)函數(shù)可視為,則為斜率為1的直線縱截距的相反數(shù),該直線截距最大在過點(diǎn)時,此時,直線:,與:的交點(diǎn)為,該點(diǎn)也在直線:上,故,故答案為:;.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法,屬于基礎(chǔ)題.14、【解析】

先確定關(guān)于x的方程當(dāng)a為何值時有4個不相等的實(shí)根,再將這四個根的平方和表示出來,利用函數(shù)思想來判斷當(dāng)a為何值時這4個根的平方和存在最小值即可.【詳解】由題意,當(dāng)時,,此時,此時函數(shù)在單調(diào)遞減,在單調(diào)遞增,方程最多2個不相等的實(shí)根,舍;當(dāng)時,函數(shù)圖象如下所示:從左到右方程,有4個不相等的實(shí)根,依次為,,,,即,由圖可知,故,且,,從而,令,顯然,,要使該式在時有最小值,則對稱軸,解得.綜上所述,實(shí)數(shù)a的取值范圍是.【點(diǎn)睛】本題考查了函數(shù)和方程的知識,但需要一定的邏輯思維能力,屬于較難題.15、【解析】

根據(jù)的展開式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,得到,再利用組合數(shù)公式求解.【詳解】因?yàn)榈恼归_式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,所以,即,所以,即,解得.故答案為:10【點(diǎn)睛】本題主要考查二項(xiàng)式的系數(shù),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.16、【解析】

根據(jù)題意作出圖象,利用三垂線定理找出二面角的平面角,再設(shè)出的長,即可求出三棱錐的高,然后利用利用基本不等式即可確定三棱錐的體積最大值,從而得出各棱的長度,最后根據(jù)球的幾何性質(zhì),利用球心距,半徑,底面半徑之間的關(guān)系即可求出三棱錐的外接球的表面積.【詳解】如圖所示:過點(diǎn)作面,垂足為,過點(diǎn)作交于點(diǎn),連接.則為二面角的平面角的補(bǔ)角,即有.∵易證面,∴,而三角形為等邊三角形,∴為的中點(diǎn).設(shè),.∴.故三棱錐的體積為當(dāng)且僅當(dāng)時,,即.∴三點(diǎn)共線.設(shè)三棱錐的外接球的球心為,半徑為.過點(diǎn)作于,∴四邊形為矩形.則,,,在中,,解得.三棱錐的外接球的表面積為.故答案為:.【點(diǎn)睛】本題主要考查三棱錐的外接球的表面積的求法,涉及二面角的運(yùn)用,基本不等式的應(yīng)用,以及球的幾何性質(zhì)的應(yīng)用,意在考查學(xué)生的直觀想象能力,數(shù)學(xué)運(yùn)算能力和邏輯推理能力,屬于較難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】

(1)取中點(diǎn),連接,根據(jù)等腰三角形的性質(zhì)得到,利用全等三角形證得,由此證得平面,進(jìn)而證得平面平面.(2)由(1)知平面,即是四面體的面上的高,結(jié)合錐體體積公式,求得四面體的體積.【詳解】(1)證明:如圖,取中點(diǎn),連接,由則,則,故故,平面.又平面,故平面平面(2)由(1)知平面,即是四面體的面上的高,且.在中,,由勾股定理易知故四面體的體積【點(diǎn)睛】本小題主要考查面面垂直的證明,考查錐體體積計(jì)算,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1);(2).【解析】

(1)根據(jù)誘導(dǎo)公式和二倍角公式,將已知等式化為角關(guān)系式,求出,再由二倍角余弦公式,即可求解;(2)在中,根據(jù)面積公式求出長,根據(jù)余弦定理求出,由正弦定理求出,即可求出結(jié)論.【詳解】(1),,;(2)在中,由(1)得,,由余弦定理得,,在中,,.【點(diǎn)睛】本題考查三角恒等變換求值、面積公式、余弦定理、正弦定理解三角形,考查計(jì)算求解能力,屬于中檔題.19、(1)證明見解析;(2).【解析】

(1)用數(shù)學(xué)歸納法證明即可;(2)根據(jù)條件可得,然后將用,,表示出來,根據(jù)是一個整數(shù),可得結(jié)果.【詳解】解:(1)令,,則即∴,∴成等差數(shù)列,下面用數(shù)學(xué)歸納法證明數(shù)列是等差數(shù)列,假設(shè)成等差數(shù)列,其中,公差為,令,,∴,∴,即,∴成等差數(shù)列,∴數(shù)列是等差數(shù)列;(2),,若存在正整數(shù),使得是整數(shù),則,設(shè),,∴是一個整數(shù),∴,從而又當(dāng)時,有,綜上,的最小值為.【點(diǎn)睛】本題主要考查由遞推關(guān)系得通項(xiàng)公式和等差數(shù)列的性質(zhì),關(guān)鍵是利用數(shù)學(xué)歸納法證明數(shù)列是等差數(shù)列,屬于難題.20、(1),;(2).【解析】

(1)由曲線的參數(shù)方程消去參數(shù)可得曲線的普通方程,由此可求曲線的極坐標(biāo)方程;直接利用直線的傾斜角以及經(jīng)過的點(diǎn)求出直線的參數(shù)方程即可;(2)將直線的參數(shù)方程,代入曲線的普通方程,整理得,利用韋達(dá)定理,根據(jù)為的中點(diǎn),解出即可.【詳解】(1)由(為參數(shù))消去參數(shù),可得,即,已知曲線的普通方程為,,,,即,曲線的極坐標(biāo)方程為,直線經(jīng)過點(diǎn),且傾斜角為,直線的參數(shù)方程:(為參數(shù),).(2)設(shè)對應(yīng)的參數(shù)分別為,.將直線的參數(shù)方程代入并整理,得,,.又為的中點(diǎn),,,,,即,,,,即,.【點(diǎn)睛】本題考查了圓的參數(shù)方程與極坐標(biāo)方程之間的互化以及直線參數(shù)方程的應(yīng)用,考查了計(jì)算能力,屬于中檔題.21、(1)證明見解析(2)【解析】

(1)先利用導(dǎo)數(shù)的四則運(yùn)算法則和導(dǎo)數(shù)公式求出,再由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論