安徽工程大學(xué)《機器視覺及應(yīng)用》2021-2022學(xué)年第一學(xué)期期末試卷_第1頁
安徽工程大學(xué)《機器視覺及應(yīng)用》2021-2022學(xué)年第一學(xué)期期末試卷_第2頁
安徽工程大學(xué)《機器視覺及應(yīng)用》2021-2022學(xué)年第一學(xué)期期末試卷_第3頁
安徽工程大學(xué)《機器視覺及應(yīng)用》2021-2022學(xué)年第一學(xué)期期末試卷_第4頁
安徽工程大學(xué)《機器視覺及應(yīng)用》2021-2022學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第2頁,共2頁安徽工程大學(xué)《機器視覺及應(yīng)用》

2021-2022學(xué)年第一學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺的場景理解任務(wù)中,假設(shè)要理解一個室內(nèi)場景的布局和功能,例如判斷是辦公室還是客廳。以下哪種信息對于準(zhǔn)確理解場景是至關(guān)重要的?()A.物體的類別和位置B.圖像的顏色分布C.圖像的拍攝角度D.隨機選擇圖像中的部分區(qū)域進行分析2、在計算機視覺的圖像分割任務(wù)中,假設(shè)要對細(xì)胞圖像進行精細(xì)分割。以下關(guān)于模型選擇的考慮因素,哪一項是不準(zhǔn)確的?()A.模型對細(xì)胞邊界的捕捉能力B.模型在小樣本數(shù)據(jù)上的泛化能力C.模型的訓(xùn)練時間和計算資源需求D.模型的知名度和在學(xué)術(shù)圈的引用次數(shù)3、在計算機視覺的人臉識別任務(wù)中,假設(shè)要實現(xiàn)一個能夠在不同光照和表情下準(zhǔn)確識別的系統(tǒng)。以下關(guān)于數(shù)據(jù)預(yù)處理的步驟,哪一項是最重要的?()A.對人臉圖像進行歸一化處理,統(tǒng)一大小和亮度B.對圖像進行銳化處理,增強面部特征C.給圖像添加藝術(shù)效果,提高美觀度D.隨機裁剪圖像,增加數(shù)據(jù)多樣性4、計算機視覺中的視覺跟蹤算法常用于跟蹤運動目標(biāo)。假設(shè)要跟蹤一只在森林中奔跑的動物,以下關(guān)于視覺跟蹤算法的描述,哪一項是不正確的?()A.基于模型的跟蹤算法通過建立目標(biāo)的模型來預(yù)測其位置和狀態(tài)B.基于特征的跟蹤算法依賴于目標(biāo)的顯著特征進行跟蹤C.視覺跟蹤算法在目標(biāo)發(fā)生快速變形或完全遮擋時仍能保持準(zhǔn)確跟蹤D.結(jié)合多種線索和信息的融合跟蹤算法可以提高跟蹤的穩(wěn)定性和可靠性5、在計算機視覺的圖像分割任務(wù)中,需要將圖像中的不同物體或區(qū)域準(zhǔn)確地劃分出來。假設(shè)要對一張包含多個水果的圖像進行精確分割,每個水果的邊界可能不清晰,且存在部分重疊和陰影。以下哪種圖像分割算法在處理這種具有挑戰(zhàn)性的情況時表現(xiàn)更為出色?()A.基于閾值的分割B.基于區(qū)域的分割C.基于邊緣檢測的分割D.基于深度學(xué)習(xí)的語義分割6、在計算機視覺的姿態(tài)估計任務(wù)中,例如估計人體關(guān)節(jié)的位置和姿態(tài),以下哪種方法可能在精度和實時性之間取得較好的平衡?()A.基于模型的方法B.基于深度學(xué)習(xí)的回歸方法C.基于深度學(xué)習(xí)的分類方法D.以上都不是7、計算機視覺中的光流計算用于估計圖像中像素的運動。假設(shè)要分析一段視頻中物體的運動速度和方向。以下關(guān)于光流計算的描述,哪一項是不準(zhǔn)確的?()A.可以通過比較連續(xù)幀之間的像素差異來計算光流B.光流計算能夠為視頻中的目標(biāo)跟蹤和行為分析提供重要信息C.無論視頻的幀率和分辨率如何,光流計算都能準(zhǔn)確地估計像素運動D.深度學(xué)習(xí)方法也被應(yīng)用于光流計算,提高了計算的準(zhǔn)確性和效率8、在計算機視覺的發(fā)展中,模型的可解釋性是一個重要的研究方向。以下關(guān)于模型可解釋性的描述,不準(zhǔn)確的是()A.模型可解釋性旨在理解模型是如何做出決策和生成輸出的B.可解釋性對于建立用戶對模型的信任和確保模型的公正性具有重要意義C.一些可視化技術(shù),如特征圖可視化和類激活映射,可以幫助解釋模型的決策過程D.目前的計算機視覺模型都具有良好的可解釋性,能夠清晰地解釋其決策依據(jù)9、在計算機視覺中,以下哪種方法常用于圖像的語義分割中的多尺度特征融合?()A.特征金字塔B.空洞卷積C.注意力機制D.以上都是10、在計算機視覺的視頻目標(biāo)跟蹤中,假設(shè)目標(biāo)在視頻中被短暫遮擋。以下關(guān)于處理遮擋情況的方法,哪一項是不太有效的?()A.利用目標(biāo)在遮擋前的運動軌跡預(yù)測其位置B.完全放棄對被遮擋目標(biāo)的跟蹤,等待其重新出現(xiàn)C.結(jié)合目標(biāo)的外觀特征和運動信息進行跟蹤D.借助周圍背景和其他相關(guān)物體的信息輔助跟蹤11、當(dāng)處理低光照條件下拍攝的圖像時,為了增強圖像的亮度和對比度,同時減少噪聲,以下哪種圖像處理方法可能更合適?()A.直方圖均衡化B.伽馬校正C.簡單地增加圖像的整體亮度值D.不進行任何處理,保留低光照效果12、在計算機視覺的無人駕駛領(lǐng)域,環(huán)境感知是關(guān)鍵環(huán)節(jié)。假設(shè)要讓無人駕駛汽車準(zhǔn)確感知周圍的道路狀況、車輛和行人,同時要應(yīng)對惡劣天氣和復(fù)雜交通場景。以下哪種環(huán)境感知技術(shù)在這種高要求的應(yīng)用中發(fā)揮著重要作用?()A.激光雷達(dá)感知B.攝像頭視覺感知C.毫米波雷達(dá)感知D.以上技術(shù)融合感知13、在計算機視覺的圖像增強處理中,目的是改善圖像的質(zhì)量和可讀性。假設(shè)我們要對一張低光照條件下拍攝的圖像進行增強,以下關(guān)于圖像增強方法的描述,哪一項是不正確的?()A.直方圖均衡化可以通過調(diào)整圖像的灰度分布,增強圖像的對比度B.基于Retinex理論的方法可以分離圖像的光照和反射成分,從而改善圖像的視覺效果C.圖像增強算法可以在不增加噪聲的情況下,顯著提高圖像的亮度和清晰度D.不同的圖像增強方法適用于不同類型的圖像,需要根據(jù)具體情況選擇合適的方法14、計算機視覺中的場景理解是對整個圖像場景的語義和結(jié)構(gòu)進行分析和理解。以下關(guān)于場景理解的描述,不準(zhǔn)確的是()A.場景理解需要綜合考慮物體、空間關(guān)系、上下文信息等多個方面B.可以通過構(gòu)建場景圖來表示場景中的實體和關(guān)系,輔助場景理解C.場景理解在智能導(dǎo)航、虛擬環(huán)境構(gòu)建和圖像編輯等領(lǐng)域具有潛在的應(yīng)用價值D.場景理解是一個已經(jīng)完全解決的問題,不存在任何技術(shù)難題15、在計算機視覺中,目標(biāo)檢測是一項重要任務(wù)。假設(shè)我們要開發(fā)一個能夠在交通場景中檢測車輛的系統(tǒng)。如果圖像中的車輛存在多種姿態(tài)、大小和光照條件的變化,以下哪種目標(biāo)檢測算法可能更適合應(yīng)對這種復(fù)雜情況?()A.基于傳統(tǒng)特征的檢測算法,如HOG特征結(jié)合SVM分類器B.基于深度學(xué)習(xí)的FasterR-CNN算法C.基于模板匹配的檢測算法D.基于顏色特征的檢測算法16、計算機視覺中的深度估計是計算場景中物體與相機的距離。假設(shè)我們要為一個增強現(xiàn)實應(yīng)用估計場景的深度信息,以下哪種深度估計方法能夠在實時性和準(zhǔn)確性之間取得較好的平衡?()A.基于立體視覺的方法B.基于結(jié)構(gòu)光的方法C.基于深度學(xué)習(xí)的單目深度估計方法D.基于飛行時間(ToF)原理的方法17、在計算機視覺的圖像去噪任務(wù)中,去除圖像中的噪聲。假設(shè)要處理一張被噪聲嚴(yán)重污染的天文圖像,以下關(guān)于圖像去噪方法的描述,哪一項是不正確的?()A.均值濾波和中值濾波等傳統(tǒng)方法可以在一定程度上去除噪聲,但可能會模糊圖像細(xì)節(jié)B.基于小波變換的方法能夠在去除噪聲的同時較好地保留圖像的邊緣和細(xì)節(jié)C.深度學(xué)習(xí)方法通過學(xué)習(xí)噪聲和干凈圖像之間的映射關(guān)系,實現(xiàn)有效的去噪D.圖像去噪可以完全恢復(fù)被噪聲破壞的原始圖像信息,沒有任何損失18、圖像分類是計算機視覺的基本任務(wù)之一。假設(shè)要對大量的動物圖像進行分類,將其分為貓、狗、兔子等類別。在進行圖像分類時,以下關(guān)于特征提取的描述,正確的是:()A.手工設(shè)計的特征,如顏色直方圖、紋理特征等,總是比自動學(xué)習(xí)的特征更有效B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠自動學(xué)習(xí)到具有判別性的圖像特征,無需人工干預(yù)C.特征提取的好壞對圖像分類的結(jié)果影響不大,主要取決于分類器的性能D.為了提高分類準(zhǔn)確率,應(yīng)該盡可能多地提取圖像的各種特征,而不考慮特征的冗余性19、計算機視覺中的表情識別旨在判斷圖像或視頻中人物的表情。假設(shè)要開發(fā)一個用于在線教育的表情識別系統(tǒng),以下關(guān)于表情特征的提取,哪一項是需要重點關(guān)注的?()A.提取面部肌肉的細(xì)微運動作為特征B.僅考慮眼睛和嘴巴的形狀變化C.忽略面部的整體輪廓,只關(guān)注局部特征D.不進行任何特征提取,直接使用原始圖像進行分類20、計算機視覺中的特征提取是非常關(guān)鍵的步驟。假設(shè)要從一組圖像中提取具有代表性的特征,以下關(guān)于特征提取方法的描述,正確的是:()A.手工設(shè)計的特征,如SIFT和HOG,在任何情況下都比深度學(xué)習(xí)自動學(xué)習(xí)的特征更有效B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠自動學(xué)習(xí)到圖像的多層次特征,具有很強的表達(dá)能力C.特征提取的結(jié)果對后續(xù)的圖像分類和目標(biāo)檢測任務(wù)沒有影響D.特征提取只需要考慮圖像的局部信息,全局信息不重要21、圖像分割是將圖像分成不同的區(qū)域,每個區(qū)域具有相似的特征。假設(shè)要對醫(yī)學(xué)圖像進行器官分割,以下關(guān)于圖像分割方法的描述,哪一項是不正確的?()A.基于閾值的分割方法簡單直接,但對于復(fù)雜圖像效果往往不佳B.基于邊緣檢測的分割方法通過尋找圖像中的邊緣來劃分區(qū)域,但容易受到噪聲影響C.基于深度學(xué)習(xí)的語義分割方法能夠?qū)崿F(xiàn)像素級別的分類,效果較好,但計算量較大D.圖像分割只適用于灰度圖像,對于彩色圖像無法進行有效的分割22、計算機視覺在自動駕駛領(lǐng)域有重要應(yīng)用。假設(shè)車輛需要根據(jù)攝像頭采集的圖像來識別道路上的交通標(biāo)志,并且要在不同天氣和光照條件下都能準(zhǔn)確識別。以下哪種方法可能有助于提高交通標(biāo)志識別的魯棒性?()A.使用多個不同類型的攝像頭獲取圖像B.僅依賴顏色特征進行識別C.采用簡單的線性分類器進行標(biāo)志分類D.減少訓(xùn)練數(shù)據(jù)中的交通標(biāo)志種類23、當(dāng)進行視頻中的動作識別時,假設(shè)要分析一段運動員訓(xùn)練的視頻,識別出其中的各種動作,如跑步、跳躍和舉重等。視頻中的動作可能存在速度變化、遮擋和視角變化等問題。為了準(zhǔn)確識別這些動作,以下哪種技術(shù)是關(guān)鍵的?()A.對每一幀圖像進行獨立的動作分類,然后綜合結(jié)果B.利用光流信息來捕捉視頻中的運動模式C.只關(guān)注視頻中的關(guān)鍵幀,忽略其他幀D.不考慮視頻的時序信息,將其視為一系列獨立的圖像24、對于視頻中的目標(biāo)跟蹤任務(wù),假設(shè)目標(biāo)在視頻中經(jīng)歷了快速的外觀變化和嚴(yán)重的遮擋。以下哪種策略有助于保持跟蹤的準(zhǔn)確性和穩(wěn)定性?()A.結(jié)合目標(biāo)的運動模型和外觀模型進行預(yù)測B.僅依賴目標(biāo)的初始外觀特征進行跟蹤C.當(dāng)出現(xiàn)遮擋時,停止跟蹤并等待目標(biāo)重新出現(xiàn)D.隨機調(diào)整跟蹤算法的參數(shù)25、在計算機視覺的圖像修復(fù)任務(wù)中,假設(shè)要填補圖像中缺失或損壞的部分。以下哪種方法可能更有效地恢復(fù)圖像的完整性和真實性?()A.基于擴散的修復(fù)方法B.基于深度學(xué)習(xí)的圖像修復(fù)模型,如ContextEncoderC.用固定的圖案或顏色填充缺失部分D.不進行修復(fù),保留圖像的缺失部分26、當(dāng)進行圖像的顯著性檢測時,假設(shè)要從一張復(fù)雜的圖像中突出顯示出人們視覺上最關(guān)注的區(qū)域,例如在一張風(fēng)景圖像中突出顯示出一座顯眼的山峰。以下哪種方法在計算圖像的顯著性時可能更準(zhǔn)確?()A.基于頻率域分析的方法,計算圖像的頻譜特征B.基于對比度的方法,比較區(qū)域與周圍的差異C.隨機選擇圖像中的部分區(qū)域作為顯著性區(qū)域D.不進行任何計算,主觀判斷顯著性區(qū)域27、在一個基于計算機視覺的智能交通監(jiān)控系統(tǒng)中,需要對車輛的類型、速度和行駛軌跡進行分析。以下哪種技術(shù)在車輛分析方面可能發(fā)揮關(guān)鍵作用?()A.目標(biāo)檢測和跟蹤B.車牌識別C.軌跡預(yù)測D.以上都是28、計算機視覺中的光流估計用于計算圖像中像素的運動信息。假設(shè)要估計一段視頻中物體的運動速度和方向,以下關(guān)于光流估計方法的描述,正確的是:()A.傳統(tǒng)的基于梯度的光流估計方法在復(fù)雜場景中能夠準(zhǔn)確計算光流B.深度學(xué)習(xí)中的光流估計網(wǎng)絡(luò)不需要大量的標(biāo)注數(shù)據(jù)進行訓(xùn)練C.光流估計的結(jié)果不受圖像噪聲和模糊的影響D.結(jié)合時空信息的深度學(xué)習(xí)光流估計方法能夠提高估計的準(zhǔn)確性和魯棒性29、在計算機視覺中,圖像分割旨在將圖像劃分為不同的區(qū)域,每個區(qū)域具有相似的特征。以下關(guān)于圖像分割的敘述,不正確的是()A.圖像分割可以基于像素的顏色、紋理等特征進行B.深度學(xué)習(xí)方法在圖像分割中取得了顯著的成果,如全卷積網(wǎng)絡(luò)(FCN)C.圖像分割在醫(yī)學(xué)影像分析、自動駕駛場景理解等方面具有重要作用D.圖像分割的結(jié)果總是完美的,能夠準(zhǔn)確地將圖像中的所有物體都分割出來30、計算機視覺中的語義分割旨在為圖像中的每個像素分配一個類別標(biāo)簽。假設(shè)要對醫(yī)學(xué)影像中的腫瘤區(qū)域進行語義分割,以下關(guān)于模型評估指標(biāo)的選擇,哪一項是最為關(guān)鍵的?()A.準(zhǔn)確率,即正確分類的像素比例B.召回率,即正確分割出腫瘤像素的比例C.F1分?jǐn)?shù),綜合考慮準(zhǔn)確率和召回率D.平均交并比(MIoU),衡量分割結(jié)果與真實標(biāo)簽的重合程度二、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)設(shè)計一個系統(tǒng),利用計算機視覺檢測電影院內(nèi)觀眾是否遵守觀影秩序。2、(本題5分)利用深度學(xué)習(xí)算法,對不同種類的肉松圖像進行分類。3、(本題5分)運用深度學(xué)習(xí)模型,對古代書法作品的作者和流派進行鑒定。4、(本題5分)通過深度學(xué)習(xí)模型,對一批手寫數(shù)字圖像進行識別和分類。5、(本題5分)使用目標(biāo)跟蹤算法,跟蹤馬戲表演中動物的表演動作。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論