常州大學《人工智能程序設(shè)計》2021-2022學年第一學期期末試卷_第1頁
常州大學《人工智能程序設(shè)計》2021-2022學年第一學期期末試卷_第2頁
常州大學《人工智能程序設(shè)計》2021-2022學年第一學期期末試卷_第3頁
常州大學《人工智能程序設(shè)計》2021-2022學年第一學期期末試卷_第4頁
常州大學《人工智能程序設(shè)計》2021-2022學年第一學期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁常州大學《人工智能程序設(shè)計》

2021-2022學年第一學期期末試卷題號一二三四總分得分一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在人工智能的研究中,模型的可解釋性是一個重要的問題。假設(shè)開發(fā)了一個用于預測股票價格的人工智能模型,但用戶對模型的決策過程和結(jié)果缺乏理解和信任。以下哪種方法能夠提高模型的可解釋性,讓用戶更好地理解模型是如何做出預測的?()A.繪制復雜的模型架構(gòu)圖B.提供特征重要性分析C.使用更多的隱藏層D.增加模型的參數(shù)數(shù)量2、人工智能中的弱人工智能和強人工智能是兩個不同的概念。假設(shè)我們在討論人工智能的發(fā)展階段,以下關(guān)于弱人工智能和強人工智能的描述,哪一項是正確的?()A.弱人工智能已經(jīng)能夠像人類一樣思考和創(chuàng)造B.強人工智能目前已經(jīng)廣泛應(yīng)用于各個領(lǐng)域C.弱人工智能只能完成特定的任務(wù),不具備通用性D.區(qū)分弱人工智能和強人工智能的關(guān)鍵在于計算能力3、人工智能中的聯(lián)邦學習技術(shù)旨在保護數(shù)據(jù)隱私的同時實現(xiàn)模型訓練。假設(shè)多個機構(gòu)想要聯(lián)合訓練一個人工智能模型,同時保護各自的數(shù)據(jù)隱私,以下關(guān)于聯(lián)邦學習的描述,正確的是:()A.聯(lián)邦學習可以在不共享原始數(shù)據(jù)的情況下,直接合并各機構(gòu)的模型參數(shù)進行訓練B.聯(lián)邦學習過程中不存在通信開銷和安全風險C.采用加密技術(shù)和模型參數(shù)交換的方式,聯(lián)邦學習能夠在保護數(shù)據(jù)隱私的前提下協(xié)同訓練模型D.聯(lián)邦學習只適用于小規(guī)模的數(shù)據(jù)和簡單的模型,對于大規(guī)模和復雜的任務(wù)不適用4、當利用人工智能進行音樂創(chuàng)作,生成具有創(chuàng)新性和藝術(shù)價值的音樂作品,以下哪種方法和技術(shù)可能會被運用?()A.基于模板的生成B.基于風格遷移C.基于生成模型D.以上都是5、自然語言處理是人工智能的重要研究方向之一,其目標是讓計算機理解和生成人類語言。以下關(guān)于自然語言處理的說法,錯誤的是()A.詞法分析、句法分析和語義理解是自然語言處理中的關(guān)鍵步驟B.機器翻譯是自然語言處理的重要應(yīng)用之一,但目前的機器翻譯質(zhì)量已經(jīng)完全達到了人類翻譯的水平C.文本分類、情感分析和信息抽取等任務(wù)都屬于自然語言處理的范疇D.自然語言處理面臨著詞匯歧義、句法結(jié)構(gòu)復雜和語義理解困難等諸多挑戰(zhàn)6、在人工智能的醫(yī)療應(yīng)用中,疾病診斷是一個重要的方向。假設(shè)我們要利用人工智能技術(shù)輔助醫(yī)生診斷心臟病,需要對大量的醫(yī)療數(shù)據(jù)進行分析。那么,以下關(guān)于人工智能在醫(yī)療診斷中的作用,哪一項是不準確的?()A.能夠發(fā)現(xiàn)醫(yī)生難以察覺的細微模式和關(guān)聯(lián)B.可以完全取代醫(yī)生的診斷,獨立做出準確的判斷C.有助于提高診斷的效率和準確性D.需要結(jié)合醫(yī)生的臨床經(jīng)驗和專業(yè)知識進行綜合判斷7、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用包括作物監(jiān)測、病蟲害預測等。假設(shè)要利用人工智能技術(shù)預測農(nóng)作物的病蟲害發(fā)生情況,以下關(guān)于農(nóng)業(yè)領(lǐng)域人工智能應(yīng)用的描述,正確的是:()A.僅依靠氣象數(shù)據(jù)就能準確預測農(nóng)作物的病蟲害發(fā)生B.人工智能在農(nóng)業(yè)中的應(yīng)用成本過高,不具有實際推廣價值C.綜合考慮農(nóng)作物的生長環(huán)境、圖像數(shù)據(jù)和歷史病蟲害信息等,可以提高病蟲害預測的準確性D.農(nóng)業(yè)領(lǐng)域的數(shù)據(jù)質(zhì)量和多樣性對人工智能應(yīng)用的效果沒有影響8、假設(shè)在一個智能工廠的質(zhì)量檢測環(huán)節(jié),需要利用人工智能技術(shù)自動檢測產(chǎn)品的缺陷,以下哪種圖像分析技術(shù)和模型可能會被采用?()A.傳統(tǒng)的圖像處理算法B.基于深度學習的目標檢測C.基于特征工程的分類模型D.以上都是9、人工智能在教育領(lǐng)域有著創(chuàng)新應(yīng)用。假設(shè)要開發(fā)一個自適應(yīng)學習系統(tǒng),以下關(guān)于其應(yīng)用的描述,哪一項是不準確的?()A.根據(jù)學生的學習進度和表現(xiàn),動態(tài)調(diào)整學習內(nèi)容和難度B.利用情感分析技術(shù)了解學生的學習情緒,提供相應(yīng)的激勵和支持C.人工智能驅(qū)動的教育系統(tǒng)可以完全替代教師的角色,實現(xiàn)自主學習D.結(jié)合虛擬現(xiàn)實和增強現(xiàn)實技術(shù),創(chuàng)造沉浸式的學習體驗10、人工智能在教育領(lǐng)域的應(yīng)用有望實現(xiàn)個性化學習和智能輔導。假設(shè)一個在線學習平臺使用人工智能為學生提供個性化課程推薦,以下關(guān)于教育領(lǐng)域人工智能應(yīng)用的描述,正確的是:()A.人工智能可以完全根據(jù)學生的學習成績來推薦課程,無需考慮其他因素B.學生的學習習慣、興趣和知識水平等因素都應(yīng)該被納入人工智能的課程推薦模型中C.人工智能在教育領(lǐng)域的應(yīng)用可能會導致學生過度依賴技術(shù),降低自主學習能力D.教育領(lǐng)域的人工智能應(yīng)用不需要考慮教育倫理和學生隱私保護問題11、自然語言處理是人工智能的重要領(lǐng)域之一,涉及到文本分類、機器翻譯等多個任務(wù)。假設(shè)要構(gòu)建一個能夠自動將英語文章翻譯成中文的系統(tǒng),需要考慮語言的語法、語義和上下文等復雜因素。以下哪種技術(shù)或方法在機器翻譯中能夠更好地捕捉語言的長距離依賴關(guān)系和語義表示?()A.基于規(guī)則的翻譯方法B.統(tǒng)計機器翻譯C.神經(jīng)機器翻譯(NMT)D.詞袋模型12、在人工智能的自動駕駛感知任務(wù)中,假設(shè)需要同時處理來自多個傳感器(如攝像頭、激光雷達、毫米波雷達)的數(shù)據(jù)。以下哪種融合方式能夠更有效地綜合利用多源信息?()A.早期融合,在特征層面進行融合B.中期融合,在決策層面進行融合C.晚期融合,在結(jié)果層面進行融合D.隨機選擇一種傳感器的數(shù)據(jù)作為主要依據(jù)13、人工智能中的情感分析旨在判斷文本所表達的情感傾向。假設(shè)要分析社交媒體上用戶對某一產(chǎn)品的評價情感,以下哪種方法可能不太適用?()A.基于詞典的方法B.基于機器學習的方法C.基于規(guī)則的方法D.基于人工判斷的方法14、人工智能中的知識表示和推理是實現(xiàn)智能系統(tǒng)的基礎(chǔ)。假設(shè)要構(gòu)建一個醫(yī)療診斷專家系統(tǒng),能夠根據(jù)患者的癥狀、檢查結(jié)果等信息進行推理和診斷。以下哪種知識表示方法最適合用于表示復雜的醫(yī)學知識和推理規(guī)則,并且便于系統(tǒng)的更新和維護?()A.產(chǎn)生式規(guī)則B.語義網(wǎng)絡(luò)C.框架表示D.一階謂詞邏輯15、知識圖譜在人工智能中用于整合和表示知識。假設(shè)要構(gòu)建一個關(guān)于歷史事件的知識圖譜,以下關(guān)于知識圖譜構(gòu)建的描述,正確的是:()A.可以隨意收集和整合信息,無需對知識的準確性和可靠性進行驗證B.知識圖譜的結(jié)構(gòu)和關(guān)系定義不重要,只要包含大量的數(shù)據(jù)就行C.構(gòu)建知識圖譜需要對知識進行精心的組織和關(guān)聯(lián),以支持有效的查詢和推理D.知識圖譜一旦構(gòu)建完成,就無需更新和維護,因為知識是固定不變的二、簡答題(本大題共4個小題,共20分)1、(本題5分)談?wù)勅斯ぶ悄茉谥悄苷衅溉瞬女嬒駱?gòu)建中的應(yīng)用。2、(本題5分)解釋人工智能在智能營銷效果評估中的方法。3、(本題5分)簡述人工智能在智能成本效益分析中的技術(shù)。4、(本題5分)簡述模型解釋方法,如特征重要性分析。三、操作題(本大題共5個小題,共25分)1、(本題5分)使用Python的TensorFlow庫,構(gòu)建一個膠囊網(wǎng)絡(luò)(CapsNet)模型,對MNIST手寫數(shù)字數(shù)據(jù)集進行分類。與傳統(tǒng)的卷積神經(jīng)網(wǎng)絡(luò)進行性能比較和分析。2、(本題5分)在Python中,運用差分進化算法優(yōu)化一個高維函數(shù)。定義變異策略和控制參數(shù),展示優(yōu)化過程和結(jié)果。3、(本題5分)使用機器學習算法對氣象數(shù)據(jù)進行分析,預測氣候變化的趨勢和影響,為應(yīng)對氣候變化提供決策支持。4、(本題5分)運用Python的OpenCV庫,實現(xiàn)對視頻中的火災檢測和預警。通過圖像特征提取和機器學習算法,及時發(fā)現(xiàn)火災跡象并發(fā)出警報。5、(本題5分)使用OpenCV和深度學習模型,實現(xiàn)對交通標志的識別。在道路圖像中準確識別各種交通標志,保障交通安全。四、案例分析題(本大題共4個小題,共40分)1、(本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論