版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣西鐘山中學2025屆高三最后一模數(shù)學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設集合,,則().A. B.C. D.2.已知集合A={x|x<1},B={x|},則A. B.C. D.3.中,點在邊上,平分,若,,,,則()A. B. C. D.4.已知隨機變量滿足,,.若,則()A., B.,C., D.,5.設函數(shù),則使得成立的的取值范圍是().A. B.C. D.6.在中,在邊上滿足,為的中點,則().A. B. C. D.7.為計算,設計了如圖所示的程序框圖,則空白框中應填入()A. B. C. D.8.已知實數(shù)滿足約束條件,則的最小值為()A.-5 B.2 C.7 D.119.已知a>0,b>0,a+b=1,若α=,則的最小值是()A.3 B.4 C.5 D.610.函數(shù)在的圖象大致為A. B.C. D.11.設全集為R,集合,,則A. B. C. D.12.函數(shù)的最大值為,最小正周期為,則有序數(shù)對為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)與的圖象上存在關于軸對稱的點,則的取值范圍為_____.14.已知拋物線的焦點和橢圓的右焦點重合,直線過拋物線的焦點與拋物線交于、兩點和橢圓交于、兩點,為拋物線準線上一動點,滿足,,當面積最大時,直線的方程為______.15.在中,角,,所對的邊分別邊,且,設角的角平分線交于點,則的值最小時,___.16.滿足約束條件的目標函數(shù)的最小值是.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)2019年9月26日,攜程網(wǎng)發(fā)布《2019國慶假期旅游出行趨勢預測報告》,2018年國慶假日期間,西安共接待游客1692.56萬人次,今年國慶有望超過2000萬人次,成為西部省份中接待游客量最多的城市.旅游公司規(guī)定:若公司某位導游接待旅客,旅游年總收人不低于40(單位:萬元),則稱該導游為優(yōu)秀導游.經(jīng)驗表明,如果公司的優(yōu)秀導游率越高,則該公司的影響度越高.已知甲、乙家旅游公司各有導游40名,統(tǒng)計他們一年內旅游總收入,分別得到甲公司的頻率分布直方圖和乙公司的頻數(shù)分布表如下:分組頻數(shù)(1)求的值,并比較甲、乙兩家旅游公司,哪家的影響度高?(2)從甲、乙兩家公司旅游總收人在(單位:萬元)的導游中,隨機抽取3人進行業(yè)務培訓,設來自甲公司的人數(shù)為,求的分布列及數(shù)學期望.18.(12分)已知橢圓E:()的離心率為,且短軸的一個端點B與兩焦點A,C組成的三角形面積為.(Ⅰ)求橢圓E的方程;(Ⅱ)若點P為橢圓E上的一點,過點P作橢圓E的切線交圓O:于不同的兩點M,N(其中M在N的右側),求四邊形面積的最大值.19.(12分)設函數(shù).(1)若,求實數(shù)的取值范圍;(2)證明:,恒成立.20.(12分)已知函數(shù).(1)討論的單調性;(2)若函數(shù)在區(qū)間上的最小值為,求m的值.21.(12分)如圖,在三棱柱中,,,,為的中點,且.(1)求證:平面;(2)求銳二面角的余弦值.22.(10分)已知等比數(shù)列中,,是和的等差中項.(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)題意,求出集合A,進而求出集合和,分析選項即可得到答案.【詳解】根據(jù)題意,則故選:D【點睛】此題考查集合的交并集運算,屬于簡單題目,2、A【解析】∵集合∴∵集合∴,故選A3、B【解析】
由平分,根據(jù)三角形內角平分線定理可得,再根據(jù)平面向量的加減法運算即得答案.【詳解】平分,根據(jù)三角形內角平分線定理可得,又,,,,..故選:.【點睛】本題主要考查平面向量的線性運算,屬于基礎題.4、B【解析】
根據(jù)二項分布的性質可得:,再根據(jù)和二次函數(shù)的性質求解.【詳解】因為隨機變量滿足,,.所以服從二項分布,由二項分布的性質可得:,因為,所以,由二次函數(shù)的性質可得:,在上單調遞減,所以.故選:B【點睛】本題主要考查二項分布的性質及二次函數(shù)的性質的應用,還考查了理解辨析的能力,屬于中檔題.5、B【解析】
由奇偶性定義可判斷出為偶函數(shù),由單調性的性質可知在上單調遞增,由此知在上單調遞減,從而將所求不等式化為,解絕對值不等式求得結果.【詳解】由題意知:定義域為,,為偶函數(shù),當時,,在上單調遞增,在上單調遞減,在上單調遞增,則在上單調遞減,由得:,解得:或,的取值范圍為.故選:.【點睛】本題考查利用函數(shù)的單調性和奇偶性求解函數(shù)不等式的問題;奇偶性的作用是能夠確定對稱區(qū)間的單調性,單調性的作用是能夠將函數(shù)值的大小關系轉化為自變量的大小關系,進而化簡不等式.6、B【解析】
由,可得,,再將代入即可.【詳解】因為,所以,故.故選:B.【點睛】本題考查平面向量的線性運算性質以及平面向量基本定理的應用,是一道基礎題.7、A【解析】
根據(jù)程序框圖輸出的S的值即可得到空白框中應填入的內容.【詳解】由程序框圖的運行,可得:S=0,i=0滿足判斷框內的條件,執(zhí)行循環(huán)體,a=1,S=1,i=1滿足判斷框內的條件,執(zhí)行循環(huán)體,a=2×(﹣2),S=1+2×(﹣2),i=2滿足判斷框內的條件,執(zhí)行循環(huán)體,a=3×(﹣2)2,S=1+2×(﹣2)+3×(﹣2)2,i=3…觀察規(guī)律可知:滿足判斷框內的條件,執(zhí)行循環(huán)體,a=99×(﹣2)99,S=1+2×(﹣2)+3×(﹣2)2+…+1×(﹣2)99,i=1,此時,應該不滿足判斷框內的條件,退出循環(huán),輸出S的值,所以判斷框中的條件應是i<1.故選:A.【點睛】本題考查了當型循環(huán)結構,當型循環(huán)是先判斷后執(zhí)行,滿足條件執(zhí)行循環(huán),不滿足條件時算法結束,屬于基礎題.8、A【解析】
根據(jù)約束條件畫出可行域,再將目標函數(shù)化成斜截式,找到截距的最小值.【詳解】由約束條件,畫出可行域如圖變?yōu)闉樾甭蕿?3的一簇平行線,為在軸的截距,最小的時候為過點的時候,解得所以,此時故選A項【點睛】本題考查線性規(guī)劃求一次相加的目標函數(shù),屬于常規(guī)題型,是簡單題.9、C【解析】
根據(jù)題意,將a、b代入,利用基本不等式求出最小值即可.【詳解】∵a>0,b>0,a+b=1,∴,當且僅當時取“=”號.
答案:C【點睛】本題考查基本不等式的應用,“1”的應用,利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內涵:一正是首先要判斷參數(shù)是否為正;二定是其次要看和或積是否為定值(和定積最大,積定和最?。?;三相等是最后一定要驗證等號能否成立,屬于基礎題.10、A【解析】
因為,所以排除C、D.當從負方向趨近于0時,,可得.故選A.11、B【解析】分析:由題意首先求得,然后進行交集運算即可求得最終結果.詳解:由題意可得:,結合交集的定義可得:.本題選擇B選項.點睛:本題主要考查交集的運算法則,補集的運算法則等知識,意在考查學生的轉化能力和計算求解能力.12、B【解析】函數(shù)(為輔助角)∴函數(shù)的最大值為,最小正周期為故選B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
兩函數(shù)圖象上存在關于軸對稱的點的等價命題是方程在區(qū)間上有解,化簡方程在區(qū)間上有解,構造函數(shù),求導,求出單調區(qū)間,利用函數(shù)性質得解.【詳解】解:根據(jù)題意,若函數(shù)與的圖象上存在關于軸對稱的點,則方程在區(qū)間上有解,即方程在區(qū)間上有解,設函數(shù),其導數(shù),又由,可得:當時,為減函數(shù),當時,為增函數(shù),故函數(shù)有最小值,又由;比較可得:,故函數(shù)有最大值,故函數(shù)在區(qū)間上的值域為;若方程在區(qū)間上有解,必有,則有,即的取值范圍是;故答案為:;【點睛】本題利用導數(shù)研究函數(shù)在某區(qū)間上最值求參數(shù)的問題,函數(shù)零點問題的拓展.由于函數(shù)的零點就是方程的根,在研究方程的有關問題時,可以將方程問題轉化為函數(shù)問題解決.此類問題的切入點是借助函數(shù)的零點,結合函數(shù)的圖象,采用數(shù)形結合思想加以解決.14、【解析】
根據(jù)均值不等式得到,,根據(jù)等號成立條件得到直線的傾斜角為,計算得到直線方程.【詳解】由橢圓,可知,,,,,,,(當且僅當,等號成立),,,,,直線的傾斜角為,直線的方程為.故答案為:.【點睛】本題考查了拋物線,橢圓,直線的綜合應用,意在考查學生的計算能力和綜合應用能力.15、【解析】
根據(jù)題意,利用余弦定理和基本不等式得出,再利用正弦定理,即可得出.【詳解】因為,則,由余弦定理得:,當且僅當時取等號,又因為,,所以.故答案為:.【點睛】本題考查余弦定理和正弦定理的應用,以及基本不等式求最值,考查計算能力.16、-2【解析】
可行域是如圖的菱形ABCD,代入計算,知為最小.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),乙公司影響度高;(2)見解析,【解析】
(1)利用各小矩形的面積和等于1可得a,由導游人數(shù)為40人可得b,再由總收人不低于40可計算出優(yōu)秀率;(2)易得總收入在中甲公司有4人,乙公司有2人,則甲公司的人數(shù)的值可能為1,2,3,再計算出相應取值的概率即可.【詳解】(1)由直方圖知,,解得,由頻數(shù)分布表中知:,解得.所以,甲公司的導游優(yōu)秀率為:,乙公司的導游優(yōu)秀率為:,由于,所以乙公司影響度高.(2)甲公司旅游總收入在中的有人,乙公司旅游總收入在中的有2人,故的可能取值為1,2,3,易知:,;.所以的分布列為:123P.【點睛】本題考查頻率分布直方圖、隨機變量的分布列與期望,考查學生數(shù)據(jù)處理與數(shù)學運算的能力,是一道中檔題.18、(Ⅰ);(Ⅱ)4.【解析】
(Ⅰ)結合已知可得,求出a,b的值,即可得橢圓方程;(Ⅱ)由題意可知,直線的斜率存在,設出直線方程,聯(lián)立直線方程與橢圓方程,利用判別式等于0可得,聯(lián)立直線方程與圓的方程,結合根與系數(shù)的關系求得,利用弦長公式及點到直線的距離公式,求出,得到,整理后利用基本不等式求最值.【詳解】解:(Ⅰ)可得,結合,解得,,,得橢圓方程;(Ⅱ)易知直線的斜率k存在,設:,由,得,由,得,∵,設點O到直線:的距離為d,,,由,得,,,∴∴,∴而,,易知,∴,則,四邊形的面積當且僅當,即時取“”.∴四邊形面積的最大值為4.【點睛】本題考查了由求橢圓的標準方程,直線與橢圓的位置關系,考查了學生的計算能力,綜合性比較強,屬于難題.19、(1)(2)證明見解析【解析】
(1)將不等式化為,利用零點分段法,求得不等式的解集.(2)將要證明的不等式轉化為證,恒成立,由的最小值為,得到只要證,即證,利用絕對值不等式和基本不等式,證得上式成立.【詳解】(1)∵,∴,即當時,不等式化為,∴當時,不等式化為,此時無解當時,不等式化為,∴綜上,原不等式的解集為(2)要證,恒成立即證,恒成立∵的最小值為-2,∴只需證,即證又∴成立,∴原題得證【點睛】本題考查絕對值不等式的性質、解法,基本不等式等知識;考查推理論證能力、運算求解能力;考查化歸與轉化,分類與整合思想.20、(1)見解析(2)【解析】
(1)先求導,再對m分類討論,求出的單調性;(2)對m分三種情況討論求函數(shù)在區(qū)間上的最小值即得解.【詳解】(1)若,當時,;當時.,所以在上單調遞增,在上單調遞減若.在R上單調遞增若,當時,;當時.,所以在上單調遞增,在上單調遞減(2)由(1)可知,當時,在上單調遞增,則.則不合題意當時,在上單調遞減,在上單調遞增.則,即又因為單調遞增,且,故綜上,【點睛】本題主要考查利用導數(shù)研究函數(shù)的單調性和最值,意在考查學生對這些知識的理解掌握水平.21、(1)證明見解析;(2).【解析】
(1)證明后可得平面,從而得,結合已知得線面垂直;(2)以為坐標原點,以為軸,為軸,為建立空間直角坐標系,設,寫出各點坐標,求出二面角的面的法向量,由法向量夾角的余弦值得二面角的余弦值.【詳解】(1)證明:因為,為中點,所以,又,,所以平面,又平面,所以,又,,所以平面.(2)由已知及(1)可知,,兩兩垂直,所以以為坐標原點,以為軸,為軸,為建立空間直角坐標系,設,則,,,,,.設平面的法向量,則,即,令,則;設平面的法向量,則,即,令,則,所以.故銳二面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 有關抵押借款合同范文
- oem委托加工合同協(xié)議常用范本年
- 變電站安裝工程承包合同模板
- 2024年高考英語 (全國甲卷)真題詳細解讀及評析
- 個人商品購銷合同
- 2025年外研版九年級歷史下冊月考試卷含答案
- 貨物運輸合同、法規(guī)與保險
- 2025年外研版九年級歷史下冊階段測試試卷
- 造紙機購買合同
- 民政局離婚的協(xié)議書范本
- 縣城屠宰場建設可行性研究報告
- 2025高考數(shù)學一輪復習-第8章-第3節(jié) 圓的方程【課件】
- 人文關懷在護理工作中的體現(xiàn)
- 2025年1月八省聯(lián)考高考綜合改革適應性測試-高三生物(陜西、山西、寧夏、青海卷) 含解析
- 環(huán)保行業(yè)深度研究報告
- 社會主義核心價值觀課件
- 《公路養(yǎng)護安全培訓》課件
- 公益捐助活動影響力評估方法
- 2025年中國陪診服務行業(yè)現(xiàn)狀、發(fā)展環(huán)境及投資前景分析報告
- 第七講推動構建新時代的大國關系格局-2024年形勢與政策(課件)
- 2025年高考作文備考:議論文寫作的論證手法
評論
0/150
提交評論