新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專(zhuān)題13 等差數(shù)列和等比數(shù)列的計(jì)算和性質(zhì)(解析版)_第1頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專(zhuān)題13 等差數(shù)列和等比數(shù)列的計(jì)算和性質(zhì)(解析版)_第2頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專(zhuān)題13 等差數(shù)列和等比數(shù)列的計(jì)算和性質(zhì)(解析版)_第3頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專(zhuān)題13 等差數(shù)列和等比數(shù)列的計(jì)算和性質(zhì)(解析版)_第4頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專(zhuān)題13 等差數(shù)列和等比數(shù)列的計(jì)算和性質(zhì)(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩25頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

答案第=page11頁(yè),共=sectionpages22頁(yè)專(zhuān)題13等差數(shù)列和等比數(shù)列的計(jì)算和性質(zhì)【練基礎(chǔ)】單選題1.(2021秋·廣東深圳·高三深圳市龍華中學(xué)??茧A段練習(xí))記SKIPIF1<0為等差數(shù)列SKIPIF1<0的前n項(xiàng)和.已知SKIPIF1<0,則A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】等差數(shù)列通項(xiàng)公式與前n項(xiàng)和公式.本題還可用排除,對(duì)B,SKIPIF1<0,SKIPIF1<0,排除B,對(duì)C,SKIPIF1<0,排除C.對(duì)D,SKIPIF1<0,排除D,故選A.【詳解】由題知,SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0,故選A.【點(diǎn)睛】本題主要考查等差數(shù)列通項(xiàng)公式與前n項(xiàng)和公式,滲透方程思想與數(shù)學(xué)計(jì)算等素養(yǎng).利用等差數(shù)列通項(xiàng)公式與前n項(xiàng)公式即可列出關(guān)于首項(xiàng)與公差的方程,解出首項(xiàng)與公差,在適當(dāng)計(jì)算即可做了判斷.2.(2021·云南·統(tǒng)考二模)已知數(shù)列SKIPIF1<0、SKIPIF1<0都是等差數(shù)列,設(shè)SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由題意利用等差數(shù)列的性質(zhì)、等差數(shù)列的前SKIPIF1<0項(xiàng)和公式,得出結(jié)論.【詳解】∵SKIPIF1<0,∴SKIPIF1<0,故選:A3.(2022秋·福建莆田·高三校考期中)等差數(shù)列SKIPIF1<0的首項(xiàng)為1,公差不為0,若SKIPIF1<0成等比數(shù)列,則SKIPIF1<0前6項(xiàng)的和為(

)A.SKIPIF1<0

B.SKIPIF1<0

C.3

D.8【答案】A【分析】設(shè)等差數(shù)列SKIPIF1<0的公差SKIPIF1<0,由SKIPIF1<0成等比數(shù)列求出SKIPIF1<0,代入SKIPIF1<0可得答案.【詳解】設(shè)等差數(shù)列SKIPIF1<0的公差SKIPIF1<0,∵等差數(shù)列SKIPIF1<0的首項(xiàng)為1,SKIPIF1<0成等比數(shù)列,∴SKIPIF1<0,∴SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0前6項(xiàng)的和為SKIPIF1<0.故選:A.4.(2022·四川遂寧·統(tǒng)考模擬預(yù)測(cè))已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,滿足SKIPIF1<0,則SKIPIF1<0(

)A.4043 B.4042 C.4041 D.4040【答案】A【分析】由等差中項(xiàng)的性質(zhì)及等差數(shù)列的定義寫(xiě)出SKIPIF1<0通項(xiàng)公式,再由SKIPIF1<0關(guān)系求SKIPIF1<0的通項(xiàng)公式,進(jìn)而求SKIPIF1<0.【詳解】由SKIPIF1<0知:SKIPIF1<0為等差數(shù)列,又SKIPIF1<0,SKIPIF1<0,則公差SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,可得SKIPIF1<0,而SKIPIF1<0也滿足,所以SKIPIF1<0,則SKIPIF1<0.故選:A5.(2022·全國(guó)·高三專(zhuān)題練習(xí))已知SKIPIF1<0為等比數(shù)列,SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,前n項(xiàng)積為SKIPIF1<0,則下列選項(xiàng)中正確的是(

)A.若SKIPIF1<0,則數(shù)列SKIPIF1<0單調(diào)遞增B.若SKIPIF1<0,則數(shù)列SKIPIF1<0單調(diào)遞增C.若數(shù)列SKIPIF1<0單調(diào)遞增,則SKIPIF1<0D.若數(shù)列SKIPIF1<0單調(diào)遞增,則SKIPIF1<0【答案】D【分析】根據(jù)等比數(shù)列的前n項(xiàng)和公式與通項(xiàng)公式可得SKIPIF1<0與SKIPIF1<0,進(jìn)而可得SKIPIF1<0、SKIPIF1<0取值同號(hào),即可判斷A、B;舉例首項(xiàng)和公比的值即可判斷C;根據(jù)數(shù)列的單調(diào)性可得SKIPIF1<0,進(jìn)而得到SKIPIF1<0,求出SKIPIF1<0,即可判斷D.【詳解】A:由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0、SKIPIF1<0取值同號(hào),若SKIPIF1<0,則SKIPIF1<0不是遞增數(shù)列,故A錯(cuò)誤;B:由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0、SKIPIF1<0取值同號(hào),若SKIPIF1<0,則數(shù)列SKIPIF1<0不是遞增數(shù)列,故B錯(cuò)誤;C:若等比數(shù)列SKIPIF1<0,公比SKIPIF1<0,則SKIPIF1<0,所以數(shù)列SKIPIF1<0為遞增數(shù)列,但SKIPIF1<0,故C錯(cuò)誤;D:由數(shù)列SKIPIF1<0為遞增數(shù)列,得SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故D正確.故選:D6.(2022·全國(guó)·高三專(zhuān)題練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,則數(shù)列SKIPIF1<0的前5項(xiàng)和為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】先求出SKIPIF1<0,得到SKIPIF1<0,利用裂項(xiàng)相消法求和.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0前5項(xiàng)和為SKIPIF1<0故選:D7.(2022·全國(guó)·高三專(zhuān)題練習(xí))已知等差數(shù)列SKIPIF1<0與等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和分別為SKIPIF1<0和SKIPIF1<0,且SKIPIF1<0,那么SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】設(shè)等差數(shù)列SKIPIF1<0、SKIPIF1<0的公差分別為SKIPIF1<0、SKIPIF1<0,由題意利用等差數(shù)列的性質(zhì)求出它們的首項(xiàng)、公差之間的關(guān)系,可得結(jié)論.【詳解】設(shè)等差數(shù)列SKIPIF1<0的公差分別為SKIPIF1<0和SKIPIF1<0SKIPIF1<0SKIPIF1<0,即SKIPIF1<0SKIPIF1<0,即SKIPIF1<0①SKIPIF1<0,即SKIPIF1<0②由①②解得SKIPIF1<0SKIPIF1<0故選:C8.(2023·全國(guó)·高三專(zhuān)題練習(xí))幾位大學(xué)生響應(yīng)國(guó)家的創(chuàng)業(yè)號(hào)召,開(kāi)發(fā)了一款應(yīng)用軟件.為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動(dòng).這款軟件的激活碼為下面數(shù)學(xué)問(wèn)題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項(xiàng)是20,接下來(lái)的兩項(xiàng)是20,21,再接下來(lái)的三項(xiàng)是20,21,22,依此類(lèi)推.求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項(xiàng)和為2的整數(shù)冪.那么該款軟件的激活碼是A.440 B.330C.220 D.110【答案】A【詳解】由題意得,數(shù)列如下:SKIPIF1<0則該數(shù)列的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,要使SKIPIF1<0,有SKIPIF1<0,此時(shí)SKIPIF1<0,所以SKIPIF1<0是第SKIPIF1<0組等比數(shù)列SKIPIF1<0的部分和,設(shè)SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,此時(shí)SKIPIF1<0,所以對(duì)應(yīng)滿足條件的最小整數(shù)SKIPIF1<0,故選A.點(diǎn)睛:本題非常巧妙地將實(shí)際問(wèn)題和數(shù)列融合在一起,首先需要讀懂題目所表達(dá)的具體含義,以及觀察所給定數(shù)列的特征,進(jìn)而判斷出該數(shù)列的通項(xiàng)和求和.另外,本題的難點(diǎn)在于數(shù)列里面套數(shù)列,第一個(gè)數(shù)列的和又作為下一個(gè)數(shù)列的通項(xiàng),而且最后幾項(xiàng)并不能放在一個(gè)數(shù)列中,需要進(jìn)行判斷.二、多選題9.(2023·全國(guó)·高三專(zhuān)題練習(xí))記SKIPIF1<0為等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列 D.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列【答案】BCD【分析】利用等差數(shù)列求和公式分別判斷.【詳解】由已知得SKIPIF1<0,A選項(xiàng),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,A選項(xiàng)錯(cuò)誤;B選項(xiàng),SKIPIF1<0,B選項(xiàng)正確;C選項(xiàng),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,C選項(xiàng)正確;D選項(xiàng),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,D選項(xiàng)正確;故選:BCD.10.(2022秋·河北滄州·高三統(tǒng)考階段練習(xí))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,則下列選項(xiàng)正確的為(

)A.?dāng)?shù)列SKIPIF1<0是等比數(shù)列B.?dāng)?shù)列SKIPIF1<0是等差數(shù)列C.?dāng)?shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0D.SKIPIF1<0【答案】AC【分析】由SKIPIF1<0可得,SKIPIF1<0,可判斷A,B的正誤,再求出SKIPIF1<0,可判斷C的正誤,利用裂項(xiàng)相消法求SKIPIF1<0,可判斷D的正誤.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,且SKIPIF1<0,所以數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,故A正確,B錯(cuò)誤;所以SKIPIF1<0,即SKIPIF1<0,故C正確;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故D錯(cuò)誤;故選:AC.11.(2022秋·福建三明·高三三明一中校考期中)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0為等比數(shù)列 B.SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0C.SKIPIF1<0為遞增數(shù)列 D.SKIPIF1<0的前n項(xiàng)和SKIPIF1<0【答案】AD【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0是以4為首項(xiàng),2為公比的等比數(shù)列,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0為遞減數(shù)列,SKIPIF1<0的前n項(xiàng)和SKIPIF1<0SKIPIF1<0SKIPIF1<0.故選:AD.12.(2023春·江蘇南京·高三南京市第一中學(xué)校考開(kāi)學(xué)考試)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0對(duì)于SKIPIF1<0恒成立,若定義SKIPIF1<0,SKIPIF1<0,則以下說(shuō)法正確的是(

)A.SKIPIF1<0是等差數(shù)列 B.SKIPIF1<0C.SKIPIF1<0 D.存在SKIPIF1<0使得SKIPIF1<0【答案】BC【分析】利用退位相減法可得數(shù)列的通項(xiàng)及SKIPIF1<0即可判斷A選項(xiàng),按照給出的定義求出SKIPIF1<0即可判斷B選項(xiàng),數(shù)學(xué)歸納法和累加法即可判斷C、D選項(xiàng).【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0,得SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,所以數(shù)列SKIPIF1<0為等比數(shù)列,首項(xiàng)SKIPIF1<0,公比SKIPIF1<0,故SKIPIF1<0,A選項(xiàng)錯(cuò)誤;則SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0SKIPIF1<0,B選項(xiàng)正確;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,假設(shè)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0成立,當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0可得SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,將上式相加可得SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0SKIPIF1<0,即SKIPIF1<0時(shí)也成立,故SKIPIF1<0,C選項(xiàng)正確;D選項(xiàng),當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0知不成立,當(dāng)SKIPIF1<0時(shí),由C選項(xiàng)知:SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,上式相加得SKIPIF1<0,又由上知,SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,可得SKIPIF1<0,又由SKIPIF1<0可得SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,D選項(xiàng)錯(cuò)誤;故選:BC.【點(diǎn)睛】本題關(guān)鍵在于C、D選項(xiàng)的判斷,C選項(xiàng)通過(guò)數(shù)學(xué)歸納法和累加法以及組合數(shù)的性質(zhì)即可求解;D選項(xiàng)借助C選項(xiàng)的結(jié)論,通過(guò)累加法以及組合數(shù)的性質(zhì)進(jìn)行判斷即可.三、填空題13.(2022·湖南常德·臨澧縣第一中學(xué)??家荒#┮阎炔顢?shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的公差SKIPIF1<0_________.【答案】2【分析】根據(jù)題意可得SKIPIF1<0,直接利用等差數(shù)列前n項(xiàng)和公式計(jì)算即可.【詳解】由題意知,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<014.(2022·全國(guó)·高三專(zhuān)題練習(xí))等比數(shù)列SKIPIF1<0的各項(xiàng)均為正數(shù),且SKIPIF1<0,則SKIPIF1<0___________.【答案】SKIPIF1<0【分析】根據(jù)等比數(shù)列性質(zhì)可得SKIPIF1<0,再利用對(duì)數(shù)的運(yùn)算得解.【詳解】由已知得數(shù)列SKIPIF1<0是各項(xiàng)均為正數(shù)的等比數(shù)列,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故答案為:SKIPIF1<0.15.(2022·全國(guó)·高三專(zhuān)題練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的前20項(xiàng)和為_(kāi)__________.【答案】330【分析】分別討論SKIPIF1<0為奇數(shù)時(shí),數(shù)列SKIPIF1<0的通項(xiàng)公式與SKIPIF1<0為偶數(shù)時(shí),數(shù)列SKIPIF1<0的通項(xiàng)公式,再利用分組求和法代入求和即可.【詳解】由題意,當(dāng)SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0,所以數(shù)列SKIPIF1<0是公差為SKIPIF1<0,首項(xiàng)為SKIPIF1<0的等差數(shù)列,所以SKIPIF1<0,當(dāng)SKIPIF1<0為偶數(shù)時(shí),SKIPIF1<0,所以數(shù)列SKIPIF1<0是公差為SKIPIF1<0,首項(xiàng)為SKIPIF1<0的等差數(shù)列,所以SKIPIF1<0,SKIPIF1<0SKIPIF1<0,故答案為:33016.(2022·全國(guó)·高三專(zhuān)題練習(xí))“物不知數(shù)”是中國(guó)古代著名算題,原載于《孫子算經(jīng)》卷下第二十六題:“今有物不知其數(shù),三三數(shù)之剩二;五五數(shù)之剩三;七七數(shù)之剩二.問(wèn)物幾何?”它的系統(tǒng)解法是秦九韶在《數(shù)書(shū)九章》大衍求一術(shù)中給出的.大衍求一術(shù)(也稱(chēng)作“中國(guó)剩余定理”)是中國(guó)古算中最有獨(dú)創(chuàng)性的成就之一,屬現(xiàn)代數(shù)論中的一次同余式組問(wèn)題.已知問(wèn)題中,一個(gè)數(shù)被SKIPIF1<0除余SKIPIF1<0,被SKIPIF1<0除余SKIPIF1<0,被SKIPIF1<0除余SKIPIF1<0,則在不超過(guò)SKIPIF1<0的正整數(shù)中,所有滿足條件的數(shù)的和為_(kāi)__________.【答案】SKIPIF1<0【分析】找出滿足條件的最小整數(shù)值為SKIPIF1<0,可知滿足條件的數(shù)形成以SKIPIF1<0為首項(xiàng),以SKIPIF1<0為公差的等差數(shù)列,確定該數(shù)列的項(xiàng)數(shù),利用等差數(shù)列的求和公式可求得結(jié)果.【詳解】由題意可知,一個(gè)數(shù)被SKIPIF1<0除余SKIPIF1<0,被SKIPIF1<0除余SKIPIF1<0,被SKIPIF1<0除余SKIPIF1<0,則這個(gè)正整數(shù)的最小值為SKIPIF1<0,因?yàn)镾KIPIF1<0、SKIPIF1<0、SKIPIF1<0的最小公倍數(shù)為SKIPIF1<0,由題意可知,滿足條件的數(shù)形成以SKIPIF1<0為首項(xiàng),以SKIPIF1<0為公差的等差數(shù)列,設(shè)該數(shù)列為SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,所以,SKIPIF1<0的最大值為SKIPIF1<0,所以,滿足條件的這些整數(shù)之和為SKIPIF1<0.故答案為:SKIPIF1<0.四、解答題17.(2019·湖北·校聯(lián)考高考模擬)等比數(shù)列SKIPIF1<0中,SKIPIF1<0.(1)求SKIPIF1<0的通項(xiàng)公式;(2)記SKIPIF1<0為SKIPIF1<0的前SKIPIF1<0項(xiàng)和.若SKIPIF1<0,求SKIPIF1<0.【答案】(1)SKIPIF1<0或SKIPIF1<0.(2)SKIPIF1<0.【詳解】分析:(1)列出方程,解出q可得;(2)求出前n項(xiàng)和,解方程可得m.詳解:(1)設(shè)SKIPIF1<0的公比為SKIPIF1<0,由題設(shè)得SKIPIF1<0.由已知得SKIPIF1<0,解得SKIPIF1<0(舍去),SKIPIF1<0或SKIPIF1<0.故SKIPIF1<0或SKIPIF1<0.(2)若SKIPIF1<0,則SKIPIF1<0.由SKIPIF1<0得SKIPIF1<0,此方程沒(méi)有正整數(shù)解.若SKIPIF1<0,則SKIPIF1<0.由SKIPIF1<0得SKIPIF1<0,解得SKIPIF1<0.綜上,SKIPIF1<0.點(diǎn)睛:本題主要考查等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式,屬于基礎(chǔ)題.18.(2022·全國(guó)·高三專(zhuān)題練習(xí))已知公比大于SKIPIF1<0的等比數(shù)列SKIPIF1<0滿足SKIPIF1<0.(1)求SKIPIF1<0的通項(xiàng)公式;(2)求SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【分析】(1)由題意得到關(guān)于首項(xiàng)、公比的方程組,求解方程組得到首項(xiàng)、公比的值即可確定數(shù)列的通項(xiàng)公式;(2)首先求得數(shù)列SKIPIF1<0的通項(xiàng)公式,然后結(jié)合等比數(shù)列前n項(xiàng)和公式求解其前n項(xiàng)和即可.【詳解】(1)設(shè)等比數(shù)列SKIPIF1<0的公比為q(q>1),則SKIPIF1<0,整理可得:SKIPIF1<0,SKIPIF1<0,數(shù)列的通項(xiàng)公式為:SKIPIF1<0.(2)由于:SKIPIF1<0,故:SKIPIF1<0SKIPIF1<0SKIPIF1<0.【點(diǎn)睛】等比數(shù)列基本量的求解是等比數(shù)列中的一類(lèi)基本問(wèn)題,解決這類(lèi)問(wèn)題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運(yùn)用,等差數(shù)列與等比數(shù)列求和公式是數(shù)列求和的基礎(chǔ).19.(2023·全國(guó)·高三專(zhuān)題練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0(1)記SKIPIF1<0,寫(xiě)出SKIPIF1<0,SKIPIF1<0,并求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)求SKIPIF1<0的前20項(xiàng)和.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)方法一:由題意結(jié)合遞推關(guān)系式確定數(shù)列SKIPIF1<0的特征,然后求和其通項(xiàng)公式即可;(2)方法二:分組求和,結(jié)合等差數(shù)列前SKIPIF1<0項(xiàng)和公式即可求得數(shù)列的前20項(xiàng)和.【詳解】解:(1)[方法一]【最優(yōu)解】:顯然SKIPIF1<0為偶數(shù),則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0是以2為首項(xiàng),3為公差的等差數(shù)列,于是SKIPIF1<0.[方法二]:奇偶分類(lèi)討論由題意知SKIPIF1<0,所以SKIPIF1<0.由SKIPIF1<0(SKIPIF1<0為奇數(shù))及SKIPIF1<0(SKIPIF1<0為偶數(shù))可知,數(shù)列從第一項(xiàng)起,若SKIPIF1<0為奇數(shù),則其后一項(xiàng)減去該項(xiàng)的差為1,若SKIPIF1<0為偶數(shù),則其后一項(xiàng)減去該項(xiàng)的差為2.所以SKIPIF1<0,則SKIPIF1<0.[方法三]:累加法由題意知數(shù)列SKIPIF1<0滿足SKIPIF1<0.所以SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0SKIPIF1<0.所以SKIPIF1<0,數(shù)列SKIPIF1<0的通項(xiàng)公式SKIPIF1<0.(2)[方法一]:奇偶分類(lèi)討論SKIPIF1<0SKIPIF1<0SKIPIF1<0.[方法二]:分組求和由題意知數(shù)列SKIPIF1<0滿足SKIPIF1<0,所以SKIPIF1<0.所以數(shù)列SKIPIF1<0的奇數(shù)項(xiàng)是以1為首項(xiàng),3為公差的等差數(shù)列;同理,由SKIPIF1<0知數(shù)列SKIPIF1<0的偶數(shù)項(xiàng)是以2為首項(xiàng),3為公差的等差數(shù)列.從而數(shù)列SKIPIF1<0的前20項(xiàng)和為:SKIPIF1<0SKIPIF1<0.【整體點(diǎn)評(píng)】(1)方法一:由題意討論SKIPIF1<0的性質(zhì)為最一般的思路和最優(yōu)的解法;方法二:利用遞推關(guān)系式分類(lèi)討論奇偶兩種情況,然后利用遞推關(guān)系式確定數(shù)列的性質(zhì);方法三:寫(xiě)出數(shù)列SKIPIF1<0的通項(xiàng)公式,然后累加求數(shù)列SKIPIF1<0的通項(xiàng)公式,是一種更加靈活的思路.(2)方法一:由通項(xiàng)公式分奇偶的情況求解前SKIPIF1<0項(xiàng)和是一種常規(guī)的方法;方法二:分組求和是常見(jiàn)的數(shù)列求和的一種方法,結(jié)合等差數(shù)列前SKIPIF1<0項(xiàng)和公式和分組的方法進(jìn)行求和是一種不錯(cuò)的選擇.20.(2023·全國(guó)·高三專(zhuān)題練習(xí))已知SKIPIF1<0是公差為2的等差數(shù)列,其前8項(xiàng)和為64.SKIPIF1<0是公比大于0的等比數(shù)列,SKIPIF1<0.(I)求SKIPIF1<0和SKIPIF1<0的通項(xiàng)公式;(II)記SKIPIF1<0,(i)證明SKIPIF1<0是等比數(shù)列;(ii)證明SKIPIF1<0【答案】(I)SKIPIF1<0,SKIPIF1<0;(II)(i)證明見(jiàn)解析;(ii)證明見(jiàn)解析.【分析】(I)由等差數(shù)列的求和公式運(yùn)算可得SKIPIF1<0的通項(xiàng),由等比數(shù)列的通項(xiàng)公式運(yùn)算可得SKIPIF1<0的通項(xiàng)公式;(II)(i)運(yùn)算可得SKIPIF1<0,結(jié)合等比數(shù)列的定義即可得證;(ii)放縮得SKIPIF1<0,進(jìn)而可得SKIPIF1<0,結(jié)合錯(cuò)位相減法即可得證.【詳解】(I)因?yàn)镾KIPIF1<0是公差為2的等差數(shù)列,其前8項(xiàng)和為64.所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0;設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0(負(fù)值舍去),所以SKIPIF1<0;(II)(i)由題意,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,所以數(shù)列SKIPIF1<0是等比數(shù)列;(ii)由題意知,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,兩式相減得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:最后一問(wèn)考查數(shù)列不等式的證明,因?yàn)镾KIPIF1<0無(wú)法直接求解,應(yīng)先放縮去除根號(hào),再由錯(cuò)位相減法即可得證.【提能力】一、單選題21.(2019·湖南長(zhǎng)沙·寧鄉(xiāng)一中校考模擬預(yù)測(cè))(2017新課標(biāo)全國(guó)I理科)記SKIPIF1<0為等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的公差為A.1 B.2C.4 D.8【答案】C【詳解】設(shè)公差為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,聯(lián)立SKIPIF1<0解得SKIPIF1<0,故選C.點(diǎn)睛:求解等差數(shù)列基本量問(wèn)題時(shí),要多多使用等差數(shù)列的性質(zhì),如SKIPIF1<0為等差數(shù)列,若SKIPIF1<0,則SKIPIF1<0.22.(2023·全國(guó)·高三專(zhuān)題練習(xí))已知函數(shù)SKIPIF1<0,記等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.2022 D.4044【答案】A【分析】先判斷函數(shù)SKIPIF1<0是奇函數(shù),再求出SKIPIF1<0,再利用等差數(shù)列的前SKIPIF1<0項(xiàng)和公式得解.【詳解】解:因?yàn)镾KIPIF1<0是奇函數(shù),因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:A23.(2022秋·北京·高三北京八中??奸_(kāi)學(xué)考試)已知數(shù)列SKIPIF1<0是等差數(shù)列,數(shù)列SKIPIF1<0是等比數(shù)列,若SKIPIF1<0則SKIPIF1<0的值是(

)A.SKIPIF1<0 B.1 C.2 D.4【答案】B【分析】由等差中項(xiàng)及等比中項(xiàng)的性質(zhì)求解即可.【詳解】由等差中項(xiàng)的性質(zhì)可得SKIPIF1<0,由等比中項(xiàng)的性質(zhì)可得SKIPIF1<0,因此,SKIPIF1<0.故選:B.24.(2023·湖南衡陽(yáng)·校考模擬預(yù)測(cè))在流行病學(xué)中,基本傳染數(shù)SKIPIF1<0是指在沒(méi)有外力介入,同時(shí)所有人都沒(méi)有免疫力的情況下,一個(gè)感染者平均傳染的人數(shù).SKIPIF1<0一般由疾病的感染周期、感染者與其他人的接觸頻率、每次接觸過(guò)程中傳染的概率決定.對(duì)于SKIPIF1<0,而且死亡率較高的傳染病,一般要隔離感染者,以控制傳染源,切斷傳播途徑.假設(shè)某種傳染病的基本傳染數(shù)SKIPIF1<0,平均感染周期為7天(初始感染者傳染SKIPIF1<0個(gè)人為第一輪傳染,經(jīng)過(guò)一個(gè)周期后這SKIPIF1<0個(gè)人每人再傳染SKIPIF1<0個(gè)人為第二輪傳染……)那么感染人數(shù)由1個(gè)初始感染者增加到1000人大約需要的天數(shù)為(參考數(shù)據(jù):SKIPIF1<0,SKIPIF1<0)(

)A.35 B.42 C.49 D.56【答案】B【分析】根據(jù)題意列出方程,利用等比數(shù)列的求和公式計(jì)算n輪傳染后感染的總?cè)藬?shù),得到指數(shù)方程,求得近似解,然后可得需要的天數(shù).【詳解】感染人數(shù)由1個(gè)初始感染者增加到1000人大約需要n輪傳染,則每輪新增感染人數(shù)為SKIPIF1<0,經(jīng)過(guò)n輪傳染,總共感染人數(shù)為:SKIPIF1<0,∵SKIPIF1<0,∴當(dāng)感染人數(shù)增加到1000人時(shí),SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,由SKIPIF1<0,故得SKIPIF1<0,又∵平均感染周期為7天,所以感染人數(shù)由1個(gè)初始感染者增加到1000人大約需要SKIPIF1<0天,故選:B【點(diǎn)睛】等比數(shù)列基本量的求解是等比數(shù)列中的一類(lèi)基本問(wèn)題,解決這類(lèi)問(wèn)題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運(yùn)用,尤其需要注意的是,在使用等比數(shù)列的前n項(xiàng)和公式時(shí),應(yīng)該要分類(lèi)討論,有時(shí)還應(yīng)善于運(yùn)用整體代換思想簡(jiǎn)化運(yùn)算過(guò)程.25.(2023·全國(guó)·高三專(zhuān)題練習(xí))已知函數(shù)SKIPIF1<0,若不相等的實(shí)數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的大小關(guān)系為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】本題利用函數(shù)SKIPIF1<0的奇偶性及單調(diào)性求得函數(shù)SKIPIF1<0的值域,然后利用均值不等式判斷SKIPIF1<0與SKIPIF1<0的大小關(guān)系從而進(jìn)行判斷.【詳解】SKIPIF1<0,SKIPIF1<0均為偶函數(shù),故函數(shù)SKIPIF1<0為偶函數(shù),SKIPIF1<0,令SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0單調(diào)遞增,即SKIPIF1<0單調(diào)遞增,又SKIPIF1<0,∴在SKIPIF1<0恒成立,故在SKIPIF1<0函數(shù)SKIPIF1<0遞增,且SKIPIF1<0,故函數(shù)在SKIPIF1<0遞減,在SKIPIF1<0遞增,且函數(shù)SKIPIF1<0恒成立,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列,SKIPIF1<0當(dāng)SKIPIF1<0,SKIPIF1<0均為正數(shù)時(shí),由均值不等式有:SKIPIF1<0,①,當(dāng)SKIPIF1<0,SKIPIF1<0均為負(fù)數(shù)時(shí),由均值不等式有:SKIPIF1<0,②,由①②有:SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0互不相等,故SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,故選:D.26.(2022秋·吉林四平·高三四平市第一高級(jí)中學(xué)??计谀┮阎獢?shù)列SKIPIF1<0的首項(xiàng)是SKIPIF1<0,前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,設(shè)SKIPIF1<0,若存在常數(shù)SKIPIF1<0,使不等式SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】首先由數(shù)列通項(xiàng)與前SKIPIF1<0項(xiàng)和的關(guān)系得到數(shù)列SKIPIF1<0的遞推關(guān)系SKIPIF1<0,再構(gòu)造等比數(shù)列SKIPIF1<0,求數(shù)列SKIPIF1<0的通項(xiàng)公式,進(jìn)一步求出數(shù)列SKIPIF1<0的通項(xiàng)公式,從而可求數(shù)列SKIPIF1<0通項(xiàng)公式,代入所求式子SKIPIF1<0,分子、分母同除以SKIPIF1<0構(gòu)造基本不等式即可求出SKIPIF1<0的最大值,從而求出SKIPIF1<0的范圍.【詳解】由SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),得SKIPIF1<0,兩式相減得SKIPIF1<0,變形可得:SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,∴數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng)、SKIPIF1<0為公比的等比數(shù)列,故SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,故SKIPIF1<0.故選:C.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:構(gòu)造等比數(shù)列SKIPIF1<0求SKIPIF1<0的通項(xiàng)公式,即可得SKIPIF1<0通項(xiàng)公式,再由不等式恒成立,結(jié)合基本不等式求SKIPIF1<0的最值,即可求參數(shù)范圍.27.(2023·四川瀘州·瀘州老窖天府中學(xué)??寄M預(yù)測(cè))已知數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的前10項(xiàng)和SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】C【分析】將遞推式兩邊同時(shí)倒下,然后構(gòu)造等差數(shù)列求出數(shù)列SKIPIF1<0的通項(xiàng)公式,再利用裂項(xiàng)相消法求和即可.【詳解】解:∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∴數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0的等差數(shù)列,∴SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0,∴數(shù)列SKIPIF1<0的前10項(xiàng)和SKIPIF1<0.故選:C.28.(2022·江蘇南京·金陵中學(xué)??级#┰O(shè)SKIPIF1<0是公差SKIPIF1<0的等差數(shù)列,如果SKIPIF1<0,那么SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由已知可得SKIPIF1<0,即可得解.【詳解】由已知可得SKIPIF1<0SKIPIF1<0.故選:D.二、多選題29.(2023·全國(guó)·高三專(zhuān)題練習(xí))大衍數(shù)列來(lái)源于《乾坤譜》中對(duì)易傳“大衍之?dāng)?shù)五十”的推論,主要用于解釋中國(guó)傳統(tǒng)文化中的太極衍生原理,數(shù)列中的每一項(xiàng)都代表太極衍生過(guò)程.已知大衍數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.?dāng)?shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0【答案】BCD【分析】直接由遞推公式求出SKIPIF1<0即可判斷A選項(xiàng);分SKIPIF1<0為奇數(shù)或偶數(shù)即可判斷B選項(xiàng);分SKIPIF1<0為奇數(shù)或偶數(shù)結(jié)合累加法即可判斷C選項(xiàng);由分組求和法即可判斷D選項(xiàng).【詳解】對(duì)于A,SKIPIF1<0,A錯(cuò)誤;對(duì)于B,當(dāng)SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0為偶數(shù),則SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0;當(dāng)SKIPIF1<0為偶數(shù)時(shí),SKIPIF1<0為奇數(shù),則SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,B正確;對(duì)于C,當(dāng)SKIPIF1<0為奇數(shù)且SKIPIF1<0時(shí)SKIPIF1<0,累加可得SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0時(shí)也符合;當(dāng)SKIPIF1<0為偶數(shù)且SKIPIF1<0時(shí)SKIPIF1<0,累加可得SKIPIF1<0SKIPIF1<0SKIPIF1<0;則SKIPIF1<0,C正確;對(duì)于D,設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,D正確.故選:BCD.【點(diǎn)睛】本題的關(guān)鍵點(diǎn)在于利用題目中的遞推關(guān)系式,分SKIPIF1<0為奇數(shù)或偶數(shù)兩種情況來(lái)考慮,同時(shí)借助累加法即可求出通項(xiàng),再結(jié)合分組求和法以及等差數(shù)列求和公式即可求得前SKIPIF1<0項(xiàng)和,使問(wèn)題得以解決.30.(2022·河北·模擬預(yù)測(cè))十九世紀(jì)下半葉集合論的創(chuàng)立,奠定了現(xiàn)代數(shù)學(xué)的基礎(chǔ),著名的“康托三分集”是數(shù)學(xué)理性思維的構(gòu)造產(chǎn)物,具有典型的分形特征,其操作過(guò)程如下:將閉區(qū)間[0,1]均分為三段,去掉中間的區(qū)間段SKIPIF1<0,記為第1次操作:再將剩下的兩個(gè)區(qū)間SKIPIF1<0,SKIPIF1<0分別均分為三段,并各自去掉中間的區(qū)間段,記為第2次操作:SKIPIF1<0;每次操作都在上一次操作的基礎(chǔ)上,將剩下的各個(gè)區(qū)間分別均分為三段,同樣各自去掉中間的區(qū)間段;操作過(guò)程不斷地進(jìn)行下去,剩下的區(qū)間集合即是“康托三分集”.若第n次操作去掉的區(qū)間長(zhǎng)度記為SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【分析】分析題意發(fā)現(xiàn)SKIPIF1<0是一個(gè)等比數(shù)列,按照等比數(shù)列的性質(zhì)逐一驗(yàn)證即可,其中B選項(xiàng)是化簡(jiǎn)成一個(gè)等差數(shù)列進(jìn)行判斷,CD兩個(gè)選項(xiàng)需要利用數(shù)列的單調(diào)性進(jìn)行判斷,尤其是D選項(xiàng),需要構(gòu)造新數(shù)列,利用做差法驗(yàn)證單調(diào)性.【詳解】由題可知SKIPIF1<0,SKIPIF1<0;SKIPIF1<0,SKIPIF1<0;SKIPIF1<0,由此可知SKIPIF1<0,即一個(gè)等比數(shù)列;A:SKIPIF1<0,A錯(cuò)誤;B:SKIPIF1<0,因?yàn)镾KIPIF1<0,所以該數(shù)列為遞減數(shù)列,又因?yàn)楫?dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0恒成立,B正確;C:SKIPIF1<0,即SKIPIF1<0,兩邊約去SKIPIF1<0得到SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,原式成立;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,所以SKIPIF1<0成立,即SKIPIF1<0成立,C正確;D:令SKIPIF1<0,再令SKIPIF1<0SKIPIF1<0,令SKIPIF1<0解得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以取SKIPIF1<0,由此可知SKIPIF1<0時(shí)SKIPIF1<0;SKIPIF1<0時(shí)SKIPIF1<0,故SKIPIF1<0為最大值,SKIPIF1<0,根據(jù)單調(diào)性SKIPIF1<0,即SKIPIF1<0不恒成立,D錯(cuò)誤.故選:BC31.(2022·全國(guó)·高三專(zhuān)題練習(xí))在數(shù)學(xué)課堂上,教師引導(dǎo)學(xué)生構(gòu)造新數(shù)列:在數(shù)列的每相鄰兩項(xiàng)之間插入此兩項(xiàng)的和,形成新的數(shù)列,再把所得數(shù)列按照同樣的方法不斷構(gòu)造出新的數(shù)列.將數(shù)列1,2進(jìn)行構(gòu)造,第1次得到數(shù)列1,3,2;第2次得到數(shù)列1,4,3,5,2;…;第SKIPIF1<0次得到數(shù)列1,SKIPIF1<0,2;…記SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)為SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【分析】根據(jù)數(shù)列的構(gòu)造方法先寫(xiě)出前面幾次數(shù)列的結(jié)果,尋找規(guī)律,再進(jìn)行推理運(yùn)算即可.【詳解】由題意可知,第1次得到數(shù)列1,3,2,此時(shí)SKIPIF1<0第2次得到數(shù)列1,4,3,5,2,此時(shí)SKIPIF1<0第3次得到數(shù)列1,5,4,7,3,8,5,7,2,此時(shí)SKIPIF1<0第4次得到數(shù)列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此時(shí)SKIPIF1<0第SKIPIF1<0次得到數(shù)列1,SKIPIF1<0,2此時(shí)SKIPIF1<0所以SKIPIF1<0,故A項(xiàng)正確;結(jié)合A項(xiàng)中列出的數(shù)列可得:SKIPIF1<0SKIPIF1<0用等比數(shù)列求和可得SKIPIF1<0則SKIPIF1<0SKIPIF1<0又SKIPIF1<0SKIPIF1<0所以SKIPIF1<0,故B項(xiàng)正確;由B項(xiàng)分析可知SKIPIF1<0即SKIPIF1<0,故C項(xiàng)錯(cuò)誤.SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,故D項(xiàng)正確.故選:ABD.【點(diǎn)睛】本題需要根據(jù)數(shù)列的構(gòu)造方法先寫(xiě)出前面幾次數(shù)列的結(jié)果,尋找規(guī)律,對(duì)于復(fù)雜問(wèn)題,著名數(shù)學(xué)家華羅庚指出:善于“退”,足夠的“退”,退到最原始而不失重要的地方,是學(xué)好數(shù)學(xué)的一個(gè)訣竅.所以對(duì)于復(fù)雜問(wèn)題我們應(yīng)該先足夠的退到我們最容易看清楚的地方,認(rèn)透了,鉆深了,然后再上去,這就是以退為進(jìn)的思想.32.(2023·全國(guó)·高三專(zhuān)題練習(xí))已知三棱錐S-ABC的底面是邊長(zhǎng)為a的正三角形,SASKIPIF1<0平面A

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論