版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共7頁(yè)湖南工程學(xué)院《機(jī)器人視覺(jué)技術(shù)》
2022-2023學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計(jì)算機(jī)視覺(jué)的圖像配準(zhǔn)任務(wù)中,假設(shè)要將兩張拍攝角度不同的同一物體的圖像進(jìn)行對(duì)齊。以下關(guān)于特征匹配的方法,哪一項(xiàng)是不太可靠的?()A.使用SIFT(Scale-InvariantFeatureTransform)特征進(jìn)行匹配B.基于像素值的直接比較進(jìn)行匹配C.利用SURF(SpeededUpRobustFeatures)特征進(jìn)行匹配D.通過(guò)ORB(OrientedFASTandRotatedBRIEF)特征進(jìn)行匹配2、計(jì)算機(jī)視覺(jué)在虛擬現(xiàn)實(shí)(VR)和增強(qiáng)現(xiàn)實(shí)(AR)中有重要作用。假設(shè)要在VR環(huán)境中實(shí)現(xiàn)真實(shí)感的物體交互,以下哪種技術(shù)可能對(duì)準(zhǔn)確感知物體的位置和姿態(tài)至關(guān)重要?()A.立體視覺(jué)B.光場(chǎng)成像C.結(jié)構(gòu)光D.運(yùn)動(dòng)捕捉3、計(jì)算機(jī)視覺(jué)中的表情識(shí)別旨在識(shí)別圖像或視頻中人物的表情。假設(shè)要在一個(gè)情感分析系統(tǒng)中準(zhǔn)確識(shí)別表情,以下關(guān)于表情識(shí)別方法的描述,正確的是:()A.基于幾何特征的表情識(shí)別方法對(duì)表情的細(xì)微變化不敏感,識(shí)別準(zhǔn)確率低B.基于紋理特征的表情識(shí)別方法能夠很好地捕捉表情的局部特征,但容易受到光照影響C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在表情識(shí)別中能夠?qū)W習(xí)到全局和局部的特征,但對(duì)大規(guī)模數(shù)據(jù)集依賴嚴(yán)重D.表情識(shí)別系統(tǒng)只適用于正面清晰的人臉表情,對(duì)于側(cè)臉和遮擋的表情無(wú)法識(shí)別4、在三維計(jì)算機(jī)視覺(jué)中,重建物體的三維形狀是一個(gè)重要任務(wù)。假設(shè)要從多視角的圖像中重建一個(gè)建筑物的三維模型,以下關(guān)于三維重建方法的描述,正確的是:()A.基于立體視覺(jué)的方法能夠直接從兩張圖像中準(zhǔn)確重建出物體的三維形狀B.結(jié)構(gòu)光方法在室外環(huán)境中比在室內(nèi)環(huán)境中更適用C.多視圖幾何和深度學(xué)習(xí)相結(jié)合的方法可以提高三維重建的精度和完整性D.三維重建的結(jié)果不受圖像拍攝角度和距離的影響5、計(jì)算機(jī)視覺(jué)在醫(yī)學(xué)圖像分析中有著重要作用。假設(shè)要通過(guò)眼底圖像檢測(cè)糖尿病性視網(wǎng)膜病變,以下關(guān)于模型訓(xùn)練中數(shù)據(jù)標(biāo)注的難度,哪一項(xiàng)是最為顯著的?()A.病變區(qū)域的邊界模糊,難以精確標(biāo)注B.眼底圖像的質(zhì)量參差不齊,影響標(biāo)注準(zhǔn)確性C.標(biāo)注人員的醫(yī)學(xué)知識(shí)不足,導(dǎo)致標(biāo)注錯(cuò)誤D.數(shù)據(jù)量過(guò)大,標(biāo)注工作耗時(shí)費(fèi)力6、當(dāng)處理低光照條件下拍攝的圖像時(shí),為了增強(qiáng)圖像的亮度和對(duì)比度,同時(shí)減少噪聲,以下哪種圖像處理方法可能更合適?()A.直方圖均衡化B.伽馬校正C.簡(jiǎn)單地增加圖像的整體亮度值D.不進(jìn)行任何處理,保留低光照效果7、假設(shè)要開發(fā)一個(gè)能夠?qū)χ讣y進(jìn)行識(shí)別和認(rèn)證的計(jì)算機(jī)視覺(jué)系統(tǒng),以下哪種特征提取和匹配方法可能在指紋識(shí)別中具有較高的準(zhǔn)確性?()A.細(xì)節(jié)點(diǎn)提取B.方向場(chǎng)提取C.紋理特征提取D.以上都是8、計(jì)算機(jī)視覺(jué)中的行人重識(shí)別任務(wù)是在不同攝像頭中識(shí)別出特定的行人。假設(shè)要在一個(gè)大型火車站中尋找一個(gè)走失的兒童。以下關(guān)于行人重識(shí)別的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以利用行人的服裝顏色、款式和攜帶物品等特征進(jìn)行重識(shí)別B.深度學(xué)習(xí)中的度量學(xué)習(xí)方法可以學(xué)習(xí)行人的特征表示,提高重識(shí)別的準(zhǔn)確率C.行人重識(shí)別不受行人姿態(tài)變化和攝像頭視角差異的影響D.可以通過(guò)構(gòu)建大規(guī)模的行人數(shù)據(jù)集進(jìn)行訓(xùn)練,提升模型的泛化能力9、在計(jì)算機(jī)視覺(jué)的圖像特征提取中,假設(shè)要提取對(duì)光照、旋轉(zhuǎn)和縮放具有不變性的特征。以下關(guān)于特征提取方法的描述,正確的是:()A.SIFT特征具有良好的不變性,但計(jì)算復(fù)雜度高,實(shí)時(shí)性差B.HOG特征對(duì)光照變化適應(yīng)性強(qiáng),但對(duì)旋轉(zhuǎn)和縮放較敏感C.LBP特征能夠快速提取,但特征表達(dá)能力有限D(zhuǎn).沒(méi)有一種特征提取方法能夠同時(shí)滿足對(duì)光照、旋轉(zhuǎn)和縮放的不變性要求10、在一個(gè)基于計(jì)算機(jī)視覺(jué)的機(jī)器人導(dǎo)航系統(tǒng)中,需要根據(jù)環(huán)境圖像來(lái)規(guī)劃?rùn)C(jī)器人的路徑。以下哪種視覺(jué)導(dǎo)航方法可能更適合復(fù)雜動(dòng)態(tài)環(huán)境?()A.基于地圖的導(dǎo)航B.基于視覺(jué)里程計(jì)的導(dǎo)航C.基于深度學(xué)習(xí)的端到端導(dǎo)航D.以上都是11、計(jì)算機(jī)視覺(jué)在自動(dòng)駕駛領(lǐng)域有重要應(yīng)用。假設(shè)要開發(fā)一個(gè)能夠識(shí)別道路標(biāo)志的系統(tǒng),以下關(guān)于應(yīng)對(duì)不同光照條件的策略,哪一項(xiàng)是最為有效的?()A.使用固定的閾值對(duì)圖像進(jìn)行二值化處理B.采用自適應(yīng)的圖像增強(qiáng)算法,根據(jù)光照情況調(diào)整圖像C.忽略光照變化,依靠模型的泛化能力D.只在特定的光照條件下收集訓(xùn)練數(shù)據(jù)12、在計(jì)算機(jī)視覺(jué)的視頻壓縮中,為了在保證視覺(jué)質(zhì)量的同時(shí)減少數(shù)據(jù)量,以下哪種技術(shù)可能被廣泛應(yīng)用?()A.運(yùn)動(dòng)估計(jì)和補(bǔ)償B.圖像分割C.特征點(diǎn)檢測(cè)D.邊緣檢測(cè)13、在計(jì)算機(jī)視覺(jué)的目標(biāo)跟蹤任務(wù)中,需要持續(xù)跟蹤一個(gè)或多個(gè)運(yùn)動(dòng)目標(biāo)。假設(shè)要跟蹤一個(gè)在操場(chǎng)上跑步的人。以下關(guān)于目標(biāo)跟蹤算法的描述,哪一項(xiàng)是不正確的?()A.可以基于特征匹配的方法,在連續(xù)的幀中找到目標(biāo)的相似特征來(lái)實(shí)現(xiàn)跟蹤B.深度學(xué)習(xí)中的相關(guān)濾波算法能夠快速準(zhǔn)確地跟蹤目標(biāo),適應(yīng)目標(biāo)的外觀變化C.目標(biāo)跟蹤算法能夠在目標(biāo)被遮擋或短暫消失后,仍然準(zhǔn)確地恢復(fù)跟蹤D.無(wú)論目標(biāo)的運(yùn)動(dòng)速度和軌跡如何復(fù)雜,目標(biāo)跟蹤算法都能完美地跟蹤14、在計(jì)算機(jī)視覺(jué)的視覺(jué)跟蹤與監(jiān)控應(yīng)用中,需要對(duì)特定目標(biāo)進(jìn)行持續(xù)的跟蹤和監(jiān)測(cè)。假設(shè)要對(duì)一個(gè)在大型商場(chǎng)中移動(dòng)的可疑人員進(jìn)行跟蹤,同時(shí)要應(yīng)對(duì)人群遮擋和環(huán)境變化。以下哪種視覺(jué)跟蹤與監(jiān)控技術(shù)在這種情況下能夠提供更可靠的跟蹤結(jié)果?()A.多目標(biāo)跟蹤算法B.基于深度學(xué)習(xí)的單目標(biāo)跟蹤C(jī).基于粒子濾波的跟蹤D.基于特征匹配的跟蹤15、圖像超分辨率是指從低分辨率圖像生成高分辨率圖像。假設(shè)我們有一張模糊的低分辨率老照片,想要將其清晰化并提高分辨率。以下哪種圖像超分辨率方法能夠生成更逼真的細(xì)節(jié)和更清晰的邊緣?()A.基于插值的方法,如雙線性插值B.基于重建的方法,如基于字典學(xué)習(xí)的方法C.基于深度學(xué)習(xí)的方法,如SRCNND.基于小波變換的方法16、計(jì)算機(jī)視覺(jué)中的語(yǔ)義理解旨在理解圖像或視頻中的高層語(yǔ)義信息。以下關(guān)于語(yǔ)義理解的說(shuō)法,不正確的是()A.語(yǔ)義理解需要將圖像中的物體、場(chǎng)景和事件等與先驗(yàn)知識(shí)進(jìn)行關(guān)聯(lián)和解釋B.知識(shí)圖譜可以為語(yǔ)義理解提供豐富的語(yǔ)義信息和關(guān)系C.語(yǔ)義理解在圖像描述生成、問(wèn)答系統(tǒng)等任務(wù)中發(fā)揮著重要作用D.語(yǔ)義理解已經(jīng)達(dá)到了非常完美的程度,能夠準(zhǔn)確理解任何復(fù)雜的圖像或視頻內(nèi)容17、在進(jìn)行圖像增強(qiáng)時(shí),我們常常需要在保持圖像細(xì)節(jié)的同時(shí)改善圖像質(zhì)量。假設(shè)一張低光照條件下拍攝的圖像存在大量噪聲,以下哪種圖像增強(qiáng)方法可能不太適合處理這種情況?()A.直方圖均衡化B.基于小波變換的去噪方法C.中值濾波D.高斯濾波18、在計(jì)算機(jī)視覺(jué)的圖像去噪任務(wù)中,去除圖像中的噪聲。假設(shè)要對(duì)一張受到嚴(yán)重噪聲污染的圖像進(jìn)行去噪處理,以下關(guān)于圖像去噪方法的描述,正確的是:()A.均值濾波方法能夠在去除噪聲的同時(shí)很好地保留圖像的細(xì)節(jié)B.中值濾波對(duì)椒鹽噪聲的去除效果不佳C.基于深度學(xué)習(xí)的圖像去噪方法可以自適應(yīng)地學(xué)習(xí)噪聲模式和圖像特征D.圖像去噪不會(huì)引入任何新的失真或模糊19、在計(jì)算機(jī)視覺(jué)的目標(biāo)跟蹤任務(wù)中,假設(shè)要跟蹤一個(gè)在人群中移動(dòng)的物體。以下關(guān)于跟蹤算法的選擇,哪一項(xiàng)是需要著重考慮的?()A.算法對(duì)目標(biāo)外觀變化的適應(yīng)性B.算法的計(jì)算復(fù)雜度,越低越好C.算法是否能夠處理多個(gè)同時(shí)移動(dòng)的目標(biāo)D.算法在處理靜態(tài)場(chǎng)景時(shí)的性能20、計(jì)算機(jī)視覺(jué)在農(nóng)業(yè)領(lǐng)域的應(yīng)用中,例如對(duì)農(nóng)作物的生長(zhǎng)監(jiān)測(cè)。假設(shè)要通過(guò)圖像分析評(píng)估農(nóng)作物的健康狀況,以下哪種特征可能對(duì)判斷病蟲害的存在較為敏感?()A.農(nóng)作物的顏色和紋理B.農(nóng)作物的高度和形狀C.農(nóng)田的土壤濕度D.農(nóng)田的地理位置21、計(jì)算機(jī)視覺(jué)中的目標(biāo)跟蹤是指在視頻序列中持續(xù)跟蹤特定的目標(biāo)。以下關(guān)于目標(biāo)跟蹤的敘述,不正確的是()A.目標(biāo)跟蹤可以基于特征匹配、濾波算法或深度學(xué)習(xí)方法來(lái)實(shí)現(xiàn)B.目標(biāo)的外觀變化、遮擋和背景干擾等因素會(huì)給目標(biāo)跟蹤帶來(lái)挑戰(zhàn)C.目標(biāo)跟蹤在智能監(jiān)控、人機(jī)交互和自動(dòng)駕駛等領(lǐng)域有著廣泛的應(yīng)用D.目標(biāo)跟蹤算法能夠在任何情況下都準(zhǔn)確地跟蹤目標(biāo),不受復(fù)雜環(huán)境的影響22、計(jì)算機(jī)視覺(jué)中的手勢(shì)識(shí)別用于理解人的手勢(shì)動(dòng)作。假設(shè)要在一個(gè)智能交互系統(tǒng)中實(shí)現(xiàn)實(shí)時(shí)準(zhǔn)確的手勢(shì)識(shí)別,以下關(guān)于手勢(shì)識(shí)別方法的描述,正確的是:()A.基于傳感器的手勢(shì)識(shí)別方法能夠精確獲取手勢(shì)的運(yùn)動(dòng)信息,但佩戴傳感器不方便B.基于視覺(jué)的手勢(shì)識(shí)別方法不受環(huán)境光照和背景的影響,識(shí)別穩(wěn)定性高C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在手勢(shì)識(shí)別中無(wú)法處理復(fù)雜的手勢(shì)變化和遮擋D.手勢(shì)識(shí)別系統(tǒng)只要能夠識(shí)別常見的幾種手勢(shì),就能夠滿足大多數(shù)應(yīng)用需求23、在計(jì)算機(jī)視覺(jué)的圖像分割任務(wù)中,需要將圖像中的不同物體或區(qū)域準(zhǔn)確地劃分出來(lái)。假設(shè)要對(duì)一張包含多個(gè)水果的圖像進(jìn)行精確分割,每個(gè)水果的邊界可能不清晰,且存在部分重疊和陰影。以下哪種圖像分割算法在處理這種具有挑戰(zhàn)性的情況時(shí)表現(xiàn)更為出色?()A.基于閾值的分割B.基于區(qū)域的分割C.基于邊緣檢測(cè)的分割D.基于深度學(xué)習(xí)的語(yǔ)義分割24、在目標(biāo)檢測(cè)中,YOLO(YouOnlyLookOnce)算法的特點(diǎn)是()A.檢測(cè)速度快B.檢測(cè)精度高C.適用于小目標(biāo)檢測(cè)D.對(duì)遮擋不敏感25、計(jì)算機(jī)視覺(jué)中的圖像超分辨率技術(shù)用于提高圖像的分辨率。假設(shè)要將一張低分辨率的圖像恢復(fù)成高分辨率圖像,以下關(guān)于圖像超分辨率方法的描述,正確的是:()A.基于插值的圖像超分辨率方法能夠生成清晰逼真的高分辨率圖像B.深度學(xué)習(xí)中的生成對(duì)抗網(wǎng)絡(luò)(GAN)在圖像超分辨率任務(wù)中無(wú)法發(fā)揮作用C.圖像超分辨率的效果不受原始低分辨率圖像的質(zhì)量和內(nèi)容的限制D.結(jié)合先驗(yàn)知識(shí)和深度學(xué)習(xí)的方法可以改善圖像超分辨率的效果26、假設(shè)要構(gòu)建一個(gè)能夠識(shí)別人臉表情的計(jì)算機(jī)視覺(jué)系統(tǒng),用于情感分析和人機(jī)交互??紤]到表情的細(xì)微變化和個(gè)體差異,以下哪種模型架構(gòu)可能更適合處理這種復(fù)雜的任務(wù)?()A.多層感知機(jī)B.卷積神經(jīng)網(wǎng)絡(luò)C.循環(huán)神經(jīng)網(wǎng)絡(luò)D.生成對(duì)抗網(wǎng)絡(luò)27、計(jì)算機(jī)視覺(jué)中的動(dòng)作識(shí)別是對(duì)視頻中人物或物體的動(dòng)作進(jìn)行分類和識(shí)別。以下關(guān)于動(dòng)作識(shí)別的描述,不準(zhǔn)確的是()A.動(dòng)作識(shí)別需要分析視頻中的時(shí)空特征來(lái)理解動(dòng)作的模式和類別B.雙流卷積網(wǎng)絡(luò)在動(dòng)作識(shí)別任務(wù)中被廣泛應(yīng)用,分別處理空間和時(shí)間信息C.動(dòng)作識(shí)別在體育分析、視頻監(jiān)控和智能安防等領(lǐng)域具有重要的應(yīng)用價(jià)值D.動(dòng)作識(shí)別技術(shù)已經(jīng)非常成熟,能夠準(zhǔn)確識(shí)別各種復(fù)雜和細(xì)微的動(dòng)作28、在計(jì)算機(jī)視覺(jué)的圖像去噪任務(wù)中,去除圖像中的噪聲。假設(shè)要處理一張被噪聲嚴(yán)重污染的天文圖像,以下關(guān)于圖像去噪方法的描述,哪一項(xiàng)是不正確的?()A.均值濾波和中值濾波等傳統(tǒng)方法可以在一定程度上去除噪聲,但可能會(huì)模糊圖像細(xì)節(jié)B.基于小波變換的方法能夠在去除噪聲的同時(shí)較好地保留圖像的邊緣和細(xì)節(jié)C.深度學(xué)習(xí)方法通過(guò)學(xué)習(xí)噪聲和干凈圖像之間的映射關(guān)系,實(shí)現(xiàn)有效的去噪D.圖像去噪可以完全恢復(fù)被噪聲破壞的原始圖像信息,沒(méi)有任何損失29、在計(jì)算機(jī)視覺(jué)的視覺(jué)跟蹤任務(wù)中,目標(biāo)在運(yùn)動(dòng)過(guò)程中可能會(huì)發(fā)生形變、遮擋和光照變化等情況。為了提高跟蹤的穩(wěn)定性和準(zhǔn)確性,以下哪種策略可能是有效的?()A.模型更新機(jī)制B.多特征融合C.抗遮擋處理D.以上都是30、在計(jì)算機(jī)視覺(jué)中,以下哪種方法常用于圖像的語(yǔ)義分割中的多尺度特征融合?()A.特征金字塔B.空洞卷積C.注意力機(jī)制D.以上都是二、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)運(yùn)用圖像識(shí)別技術(shù),檢測(cè)機(jī)場(chǎng)安檢處違禁物品。2、(本題5分)運(yùn)用深度學(xué)習(xí)模型,對(duì)古代建筑的風(fēng)格和年代進(jìn)行鑒定。3、(本題5分)運(yùn)用深度學(xué)習(xí),對(duì)不同種類的魚類圖像進(jìn)行分類。4、(本題5分)通過(guò)圖像分割技術(shù),將衛(wèi)星圖像中的云層和陸地進(jìn)行分離。5、(本題5分)設(shè)計(jì)一個(gè)程序,通過(guò)計(jì)算機(jī)視覺(jué)技術(shù)識(shí)別不同品牌的汽車標(biāo)志。三、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)簡(jiǎn)述計(jì)算機(jī)視
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 售后客服個(gè)人工作總結(jié)范文模板大全【5篇】
- 人教版三年級(jí)數(shù)學(xué)下冊(cè)全冊(cè)導(dǎo)學(xué)案
- 仁愛(ài)英語(yǔ)九年級(jí)總復(fù)習(xí)教案
- 部編版2024-2025學(xué)年 語(yǔ)文六年級(jí)上冊(cè)期末測(cè)試卷(含答案)
- 浙江語(yǔ)文高考6篇
- 全國(guó)運(yùn)動(dòng)員注冊(cè)協(xié)議書范本(2篇)
- 2025年電力金具合作協(xié)議書
- 冷藏庫(kù)租賃合同書
- 辦公場(chǎng)所租房協(xié)議
- 廣西汽車租賃合同范本汽車租賃合同范本
- 零工市場(chǎng)(驛站)運(yùn)營(yíng)管理 投標(biāo)方案(技術(shù)方案)
- 植物病蟲害防治技能大賽理論題及答案
- 2024年垃圾分類知識(shí)競(jìng)賽題庫(kù)和答案
- 2024-2025學(xué)年六年級(jí)科學(xué)上冊(cè)第二單元《地球的運(yùn)動(dòng)》測(cè)試卷(教科版)
- 【課件】城鎮(zhèn)與鄉(xiāng)村課件2024-2025學(xué)年人教版地理七年級(jí)上冊(cè)
- 傳感器與執(zhí)行元件制造考核試卷
- 2024年高考英語(yǔ)概要寫作高分范文全
- (正式版)SH∕T 3541-2024 石油化工泵組施工及驗(yàn)收規(guī)范
- 學(xué)校幼兒園食堂從業(yè)人員考試試題
- 2023年春外研版四年級(jí)英語(yǔ)下冊(cè)全冊(cè)完整課件
- 《現(xiàn)行制度下高新技術(shù)企業(yè)的稅收籌劃-以華為為例》
評(píng)論
0/150
提交評(píng)論