河南省多校2024-2025學(xué)年高二(上)期中數(shù)學(xué)試卷(含答案)_第1頁
河南省多校2024-2025學(xué)年高二(上)期中數(shù)學(xué)試卷(含答案)_第2頁
河南省多校2024-2025學(xué)年高二(上)期中數(shù)學(xué)試卷(含答案)_第3頁
河南省多校2024-2025學(xué)年高二(上)期中數(shù)學(xué)試卷(含答案)_第4頁
河南省多校2024-2025學(xué)年高二(上)期中數(shù)學(xué)試卷(含答案)_第5頁
已閱讀5頁,還剩4頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第=page11頁,共=sectionpages11頁河南省多校2024-2025學(xué)年高二(上)期中數(shù)學(xué)試卷一、單選題:本題共8小題,每小題5分,共40分。在每小題給出的選項中,只有一項是符合題目要求的。1.曲線x29+y24A.長軸長相等 B.短軸長相等 C.離心率相等 D.焦距相等2.已知數(shù)列an的通項公式為an=n2+b,且2和7是A.?3 B.?2 C.1 D.33.已知中心在原點的雙曲線C的一條漸近線的斜率為2,且一個焦點的坐標(biāo)為(0,10),則C的方程為A.x22?y28=1 B.4.設(shè)p為“an+an+3=an+1+anA.充要條件 B.充分不必要條件

C.必要不充分條件 D.既不充分也不必要條件5.若直線l:ax?by?4=0與圓O:x2+y2A.在圓O外 B.在圓O內(nèi) C.在圓O上 D.位置不確定6.設(shè)P為橢圓x225+y29=1上一動點,F(xiàn)1,F(xiàn)A.8 B.7 C.6 D.47.設(shè)等差數(shù)列{an}和{bn}的前n項和分別為Sn和TA.73 B.94 C.25128.已知F為拋物線E:x2=2py(p>0)的焦點,△ABC的三個頂點都在E上,且F為△ABC的重心.若|FA|+|FB|的最大值為10,則p=A.1 B.2 C.3 D.4二、多選題:本題共3小題,共18分。在每小題給出的選項中,有多項符合題目要求。9.記等差數(shù)列{an}的前n項和為Sn,S9=27A.a1=?5 B.S6=2 C.10.已知直線l的方程為ax?y?a=0,M(1,?1),N(3,3),則下列結(jié)論正確的是(

)A.點M不可能在直線l上

B.直線l恒過點(1,0)

C.若點M,N到直線l的距離相等,則a=2

D.直線l上恒存在點Q,滿足MQ11.如圖,在三棱錐A?BCD中,BD⊥BC,AB⊥平面BCD,AB=BC=BD=2,E,F(xiàn),G,H分別為AB,BD,BC,CD的中點,M是EF的中點,N是線段GH上的動點,則(

)

A.存在a>0,b>0,使得GM=aGH+bGE

B.不存在點N,使得MN⊥EH

C.|MN|的最小值為52三、填空題:本題共3小題,每小題5分,共15分。12.在空間直角坐標(biāo)系O?xyz中,點P(a,0,2b?3)與Q(a,0,b)關(guān)于原點O對稱,則點Q的坐標(biāo)為

.13.記數(shù)列{an}的前n項和為Sn,已知Sn+1+Sn?1=2Sn14.已知橢圓的任意兩條相互垂直的切線的交點的軌跡是圓,這個圓被稱為“蒙日圓”,它的圓心與橢圓的中心重合,半徑的平方等于橢圓長半軸長和短半軸長的平方和.如圖為橢圓Ω:x2a2+y2b2=1(a>b>0)及其蒙日圓O,Ω的離心率為63,點A,B,C,D分別為蒙日圓O與坐標(biāo)軸的交點,AB,BC,CD,AD分別與Ω相切于點E,F(xiàn),G,四、解答題:本題共5小題,共60分。解答應(yīng)寫出文字說明,證明過程或演算步驟。15.(本小題12分)設(shè){an}為遞增的等差數(shù)列,其前n項和為Sn,已知(1)求{a(2)求使Sn>3an16.(本小題12分)

如圖,在四棱錐P?ABCD中,四邊形ABCD是矩形,PA=AB=2,AD=4,PB=22,PD=?25,N為(1)證明:PA⊥BN;(2)求直線AB與平面PBN所成角的正弦值.17.(本小題12分)已知F是拋物線C:y2=2px(0<p<3)的焦點,P(x0,4)是C上一點,且P在(1)求C的方程;(2)過點P作斜率大于43的直線l與C交于另一點M,若△PFM的面積為3,求l的方程.18.(本小題12分)

如圖,在斜三棱柱ABC?A1B1C1中,平面AA1C1C⊥平面ABC,△ABC是邊長為2的等邊三角形,AA1=A1C,O為(Ⅰ)設(shè)向量a為平面ABC的法向量,證明:EF(Ⅱ)求點A到平面BCD的距離;(Ⅲ)求平面BCD與平面B1DC19.(本小題12分)已知雙曲線C:x2a2?y2b2=1(a>0,b>0)的離心率為2,左、右焦點分別是F1,F(xiàn)2,P是C的右支上一點,PF1的中點為Q,且QF1?|QO|=1(O為坐標(biāo)原點)(Ⅰ)求C的方程;(Ⅱ)若M,N不關(guān)于坐標(biāo)軸和原點對稱,且MN的中點為H,證明:直線OH與直線MN的斜率之積為定值;(Ⅲ)若M,N不關(guān)于y軸對稱,且AM⊥AN,證明:直線MN過定點.

參考答案1.D

2.B

3.D

4.C

5.B

6.B

7.A

8.D

9.ACD

10.ABD

11.BCD

12.0,0,1

13.n214.8315.(1)設(shè)公差為d,d>0,因為a1=6,且所以2×5×6+5×42d=6+2d2故an(2)由(1)可得,Sn若Sn>3an,則故n的最小值為5.

16.解:(1)證明:由PA=AB=2,AD=4,PB=22,PD=?25,

可得PA2+AB2=PB2,PA2+AD2=PD2,

則PA⊥AB,PA⊥AD,

又AB∩AD=A,AB?平面ABCD,AD?平面ABCD,

所以PA⊥平面ABCD,

因為BN?平面ABCD,

所以PA⊥BN;

(2)以AB、AD、AP所在直線分別為x、y、z軸建立空間直角坐標(biāo)系,如圖:

則A(0,0,0),B(2,0,0),P(0,0,2),N(1,4,0),

AB=2,0,0,PB=2,0,?2,PN=1,4,?2,

設(shè)平面PBN的法向量為n=x,y,z,

則n·PB17.解:(1)由題可知,拋物線C:y2=2px(0<p<3)的準(zhǔn)線方程為x=?p2,

因為P(x0,4)在拋物線C上,|PQ|=5,

所以16=2p(5?p2),解得p=2或p=8(舍),故拋物線C的方程:y2=4x;

(2)由(1),P4,4,F(xiàn)1,0,

設(shè)直線l為y?4=kx?4,且k>43,

聯(lián)立直線l與拋物線y2=4x,有k2x2?42k2?2k+1x+16k?12=0,

令點M的坐標(biāo)為x,y,

有162k18.(Ⅰ)證明:連接BO,

因為AA1=A1C,O為AC的中點,

所以A1O⊥AC,

因為平面AA1C1C⊥平面ABC,平面AA1C1C∩平面ABC=AC,A1O?平面AA1C1C,

所以A1O⊥平面ABC,

因為BO?平面ABC,OC?平面ABC,

所以A1O⊥BO,A1O⊥OC,

因為△ABC為等邊三角形,所以BO⊥AC,

則OB、OC、A1O兩兩垂直,

以點O為坐標(biāo)原點建立如圖所示空間直角坐標(biāo)系,

則A(0,?1,0),B(3,0,0),C(0,1,0),

A1(0,0,2),C1(0,2,2),D(0,12,1),

由AA1=BB1=0,1,2,可得B1(3,1,2),

由E為AD的中點,BF=14BB1,可得E(0,?14,12),F(xiàn)(3,14,12),

則EF=3,12,0,

可知a//OA1,而19.解:(Ⅰ)因為Q為PF1的中點,O為F1F2中點,

所以|PF2|=2|QO|,

所以|PF1|?|PF2|=2|QF1|?2|QO|=2(|QF1|?|QO|)=2=2a,即a=1,

又e=ca=2,則c=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論