濱海適生植物草海桐PG家族的鑒定和脅迫響應(yīng)研究_第1頁(yè)
濱海適生植物草海桐PG家族的鑒定和脅迫響應(yīng)研究_第2頁(yè)
濱海適生植物草海桐PG家族的鑒定和脅迫響應(yīng)研究_第3頁(yè)
濱海適生植物草海桐PG家族的鑒定和脅迫響應(yīng)研究_第4頁(yè)
濱海適生植物草海桐PG家族的鑒定和脅迫響應(yīng)研究_第5頁(yè)
已閱讀5頁(yè),還剩30頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

濱海適生植物草海桐PG家族的鑒定和脅迫響應(yīng)研究目錄1. 前言和綜述 摘要:多聚半乳糖醛酸酶(Polygalacturonase,PG)是植物中催化細(xì)胞壁果膠主要成分多聚半乳糖醛酸酶降解的水解酶,其在脅迫反應(yīng)、細(xì)胞粘附、器官脫落等多種植物耐受逆境脅迫和發(fā)育過程中起著重要作用。熱帶濱海植物草海桐(Scaevolataccada)對(duì)高鹽、干旱、高溫等環(huán)境有極強(qiáng)適應(yīng)性,在海島和海岸帶防風(fēng)固沙及植被生態(tài)恢復(fù)等方面具有重要的生態(tài)價(jià)值。目前國(guó)內(nèi)外對(duì)草海桐的抗逆適應(yīng)機(jī)制研究非常匱乏,這限制了該物種的開發(fā)利用。已有研究表明PG參與植物抗逆,但PG在草海桐脅迫耐受中的作用未知。因此,本研究對(duì)草海桐的PG基因家族進(jìn)行了系統(tǒng)、全面的鑒定和分析。系統(tǒng)發(fā)育分析將鑒定出的40個(gè)StPG分為GroupA~E七組,順式作用元件分析表明每個(gè)PG基因的啟動(dòng)子區(qū)域都含有與非生物脅迫反應(yīng)和激素反應(yīng)相關(guān)的順式作用元件。此外,根據(jù)轉(zhuǎn)錄組分析結(jié)果,GroupE的大多數(shù)成員不僅在花、果和葉三種組織中都有較高表達(dá),且在鹽霧脅迫下表達(dá)水平發(fā)生顯著變化,該分支的成員可能在草海桐響應(yīng)鹽霧脅迫過程中發(fā)揮重要作用。進(jìn)一步選取StPG1、StPG16、StPG26、StPG28和StPG37以驗(yàn)證其在不同非生物脅迫下隨時(shí)間的表達(dá)動(dòng)態(tài),結(jié)果表明PG基因在響應(yīng)不同的非生物脅迫時(shí)的表達(dá)模式不同,其中StPG28對(duì)于鹽脅迫和干旱脅迫出現(xiàn)極顯著高調(diào),StPG37在高溫脅迫下顯著高調(diào)。說明StPG28和StPG37可能分別是草海桐PG家族中響應(yīng)鹽脅迫與干旱脅迫和高溫脅迫的關(guān)鍵成員。本研究系統(tǒng)地分析了StPG基因家族的系統(tǒng)發(fā)育和脅迫響應(yīng)表達(dá)特征,為進(jìn)一步研究PG基因家族在植物抗逆中的功能提供了理論支撐,同時(shí)為更好的利用草海桐的基因資源奠定研究基礎(chǔ)。關(guān)鍵詞:草海桐;多聚半乳糖醛酸酶;基因家族;基因表達(dá);脅迫耐受

前言和綜述1.1濱海植物草海桐具有重要的生態(tài)價(jià)值草海桐(Scaevolataccada)是草海桐科(Goodeniaceae)的多年生常綠灌木或小喬木,常在沙質(zhì)海岸帶的灘涂前沿叢生,是熱帶海島天然植被中的主要建種群,表現(xiàn)出對(duì)干旱、鹽堿、貧瘠等環(huán)境的良好適應(yīng)性,是海岸帶防風(fēng)固沙優(yōu)勢(shì)樹種(圖1)ADDINEN.CITE<EndNote><Cite><Author>郭艷</Author><Year>2016</Year><RecNum>221</RecNum><DisplayText><styleface="superscript">[1]</style></DisplayText><record><rec-number>221</rec-number><foreign-keys><keyapp="EN"db-id="5pvt25esedv25pevt2hx022jtfx5tsrfwtwz"timestamp="1704442860">221</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>郭艷</author><author>夏快飛</author><author>張美</author><author>陳建通</author></authors></contributors><auth-address>中國(guó)科學(xué)院華南植物園;中國(guó)科學(xué)院大學(xué);</auth-address><titles><title>濱海適生植物草海桐Actin基因片段的克隆及序列分析%J生物技術(shù)世界</title></titles><pages>39-40</pages><number>05</number><keywords><keyword>草海桐</keyword><keyword>Actin基因</keyword><keyword>克隆</keyword><keyword>序列分析</keyword></keywords><dates><year>2016</year></dates><urls><related-urls><url>/kcms2/article/abstract?v=RyaFSLOYMk7RPg7P0hW7-QmL2H32RiHnXuPVCl6Pk55eaiHuU0QS08sDjBCA6dm2CT5kUGwRHdu6FNlR3nc2unaKYmQq4vhonaELSsSgvzi65KWCQTsI9PVGOJFlI4fd3G0hsn4PxirBfxPJjboRDw==&uniplatform=NZKPT&language=CHS</url></related-urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[1]。目前國(guó)內(nèi)外關(guān)于草海桐屬植物的報(bào)道很少,國(guó)內(nèi)外參考文獻(xiàn)僅70余篇,過去對(duì)于草海桐的研究主要集中在形態(tài)與生物學(xué)特性,次生代謝物與潛在藥用價(jià)值和草海桐屬植物的系統(tǒng)進(jìn)化分析等方面,對(duì)于草海桐的抗逆生物學(xué)特性也已有一些研究,如王瑾在光合作用及混交種植研究中發(fā)現(xiàn)強(qiáng)光和高溫有利于草海桐生長(zhǎng),可以用來(lái)構(gòu)建混交海防林ADDINEN.CITE<EndNote><Cite><Author>王瑾</Author><Year>2015</Year><RecNum>219</RecNum><DisplayText><styleface="superscript">[2]</style></DisplayText><record><rec-number>219</rec-number><foreign-keys><keyapp="EN"db-id="5pvt25esedv25pevt2hx022jtfx5tsrfwtwz"timestamp="1704442699">219</key></foreign-keys><ref-typename="Thesis">32</ref-type><contributors><authors><author>王瑾</author></authors><tertiary-authors><author>劉強(qiáng)%J,海南師范大學(xué)</author></tertiary-authors></contributors><titles><title>海南島海岸鄉(xiāng)土樹種紅厚殼、草海桐的育苗和在海防林下混交種植的研究</title></titles><keywords><keyword>紅厚殼</keyword><keyword>草海桐</keyword><keyword>育苗</keyword><keyword>混交海防林</keyword><keyword>生長(zhǎng)狀況</keyword></keywords><dates><year>2015</year></dates><work-type>碩士</work-type><urls><related-urls><url>/kcms2/article/abstract?v=RyaFSLOYMk5XXHQ7OKh_p-JB2FymFgBWMWKfqpNWSdswuAui2aIsr0UlnpWmIdw0LNxtOkVIaLKjE2Zx52oht_gHmSXp_LRvlNtiRzUWsNkT0jseMoqSgdLiBdHHJlw17-KZlFxd505hUfhq6yDYjg==&uniplatform=NZKPT&language=CHS</url></related-urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[2];徐貝貝等對(duì)草海桐的抗逆性生物學(xué)特性進(jìn)行了研究,其結(jié)果顯示草海桐具有較強(qiáng)的耐旱性,可作為濱海砂地恢復(fù)物種進(jìn)行開發(fā)利用ADDINEN.CITE<EndNote><Cite><Author>徐貝貝</Author><Year>2018</Year><RecNum>226</RecNum><DisplayText><styleface="superscript">[3]</style></DisplayText><record><rec-number>226</rec-number><foreign-keys><keyapp="EN"db-id="5pvt25esedv25pevt2hx022jtfx5tsrfwtwz"timestamp="1705583660">226</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>徐貝貝</author><author>劉楠</author><author>任海</author><author>王馨慧</author><author>劉念</author><author>簡(jiǎn)曙光</author></authors></contributors><auth-address>廣東省應(yīng)用植物學(xué)重點(diǎn)實(shí)驗(yàn)室中國(guó)科學(xué)院華南植物園;仲愷農(nóng)業(yè)工程學(xué)院;中國(guó)科學(xué)院大學(xué);</auth-address><titles><title>西沙群島草海桐的抗逆生物學(xué)特性%J廣西植物</title></titles><pages>1277-1285</pages><volume>38</volume><number>10</number><keywords><keyword>草海桐</keyword><keyword>形態(tài)解剖特征</keyword><keyword>抗逆性</keyword><keyword>營(yíng)養(yǎng)元素</keyword></keywords><dates><year>2018</year></dates><isbn>1000-3142</isbn><urls><related-urls><url>/urlid/45.1134.Q.20180313.1111.010</url></related-urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[3];Alpha等ADDINEN.CITE<EndNote><Cite><Author>Alpha</Author><Year>1996</Year><RecNum>228</RecNum><DisplayText><styleface="superscript">[4]</style></DisplayText><record><rec-number>228</rec-number><foreign-keys><keyapp="EN"db-id="5pvt25esedv25pevt2hx022jtfx5tsrfwtwz"timestamp="1705588808">228</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Alpha,ChristopherG</author><author>Drake,DonaldR</author><author>Goldstein,Guillermo%JAmericanjournalofbotany</author></authors></contributors><titles><title>MorphologicalandphysiologicalresponsesofScaevolasericea(Goodeniaceae)seedlingstosaltsprayandsubstratesalinity</title></titles><pages>86-92</pages><volume>83</volume><number>1</number><dates><year>1996</year></dates><isbn>0002-9122</isbn><urls></urls></record></Cite></EndNote>[4]和Goldstein等ADDINEN.CITE<EndNote><CiteExcludeYear="1"><Author>Goldstein</Author><RecNum>243</RecNum><DisplayText><styleface="superscript">[5]</style></DisplayText><record><rec-number>243</rec-number><foreign-keys><keyapp="EN"db-id="5pvt25esedv25pevt2hx022jtfx5tsrfwtwz"timestamp="1710509081">243</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Goldstein,G.</author><author>Drake,D.R.</author><author>Alpha,C.</author><author>Melcher,P.</author><author>Heraux,J.</author><author>Azocar,A.</author></authors></contributors><titles><title>GrowthandPhotosyntheticResponsesofScaevolasericea,AHawaiianCoastalShrub,toSubstrateSalinityandSaltSpray</title><secondary-title>InternationalJournalofPlantSciences</secondary-title><alt-title>InternationalJournalofPlantSciences</alt-title></titles><periodical><full-title>InternationalJournalofPlantSciences</full-title><abbr-1>InternationalJournalofPlantSciences</abbr-1></periodical><alt-periodical><full-title>InternationalJournalofPlantSciences</full-title><abbr-1>InternationalJournalofPlantSciences</abbr-1></alt-periodical><pages>171-179</pages><volume>157</volume><number>2</number><dates><pub-dates><date>1996/3//</date></pub-dates></dates><isbn>1058-5893</isbn><urls></urls><electronic-resource-num>10.1086/297336</electronic-resource-num><remote-database-name>Crossref</remote-database-name><access-date>2024/3/15/</access-date></record></Cite></EndNote>[5]在基質(zhì)鹽濃度和鹽霧對(duì)草海桐幼苗生長(zhǎng)影響的研究中發(fā)現(xiàn),草海桐是較典型的鹽生植物,在一定的鹽濃度范圍內(nèi),保持著較高的生長(zhǎng)速率;鹽霧的影響在基質(zhì)鹽脅迫時(shí)作用不明顯,但二者的交互作用對(duì)草海桐幼苗生長(zhǎng)的影響顯著;隨著基質(zhì)鹽濃度和鹽霧濃度的增加,葉片細(xì)胞液滲透壓逐漸增加,水分利用效率提高,但未對(duì)光合作用產(chǎn)生顯著影響,表明了草海桐具有很強(qiáng)的抗逆能力;草海桐葉片肉質(zhì)化明顯,海綿組織較柵欄組織發(fā)達(dá),液泡大而充滿整個(gè)細(xì)胞,因此可大量?jī)?chǔ)存水分,以適應(yīng)熱帶島嶼上高溫導(dǎo)致的生理性缺水;葉片上表皮基本沒有氣孔存在,僅下表皮有氣孔,導(dǎo)管直徑大,其氣孔結(jié)構(gòu)、氣孔分布和導(dǎo)管結(jié)構(gòu)與沙漠耐旱植物更接近而不是與普通熱帶植物接近ADDINEN.CITEADDINEN.CITE.DATA[3,6]。這些抗逆生物學(xué)特性部分回答了草海桐能很好地適應(yīng)熱帶島嶼高鹽、干旱和高溫等自然環(huán)境條件的潛在機(jī)制,但關(guān)于草海桐的抗逆分子機(jī)制少有研究。草海桐的脅迫耐受分子機(jī)制研究滯后與其在生態(tài)修復(fù)等方面具有的生態(tài)價(jià)值完全不成正比,這限制了該物種的開發(fā)利用。圖1-1草海桐花(A)、果(B)及全株(C)1.2多聚半乳糖醛酸酶在植物抗逆中發(fā)揮重要作用高等植物的細(xì)胞壁作為感知外界刺激的細(xì)胞組分之一和植物抵御脅迫的第一道防線,在抵御外界脅迫中起著重要作用ADDINEN.CITE<EndNote><Cite><Author>Malinovsky</Author><Year>2014</Year><RecNum>109</RecNum><DisplayText><styleface="superscript">[7]</style></DisplayText><record><rec-number>109</rec-number><foreign-keys><keyapp="EN"db-id="5pvt25esedv25pevt2hx022jtfx5tsrfwtwz"timestamp="1690352970">109</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Malinovsky,F.G.</author><author>Fangel,J.U.</author><author>Willats,W.G.</author></authors></contributors><auth-address>DNRFCenterDynaMoandCopenhagenPlantScienceCenter,DepartmentofPlantandEnvironmentalSciences,FacultyofScience,UniversityofCopenhagenCopenhagen,Denmark. DepartmentofPlantandEnvironmentalSciences,FacultyofScience,UniversityofCopenhagenCopenhagen,Denmark.</auth-address><titles><title>Theroleofthecellwallinplantimmunity</title><secondary-title>FrontPlantSci</secondary-title><alt-title>Frontiersinplantscience</alt-title></titles><periodical><full-title>FrontPlantSci</full-title><abbr-1>Frontiersinplantscience</abbr-1></periodical><alt-periodical><full-title>FrontPlantSci</full-title><abbr-1>Frontiersinplantscience</abbr-1></alt-periodical><pages>178</pages><volume>5</volume><edition>2014/05/17</edition><keywords><keyword>Damp</keyword><keyword>Pamp</keyword><keyword>Pti</keyword><keyword>callose</keyword><keyword>chitin</keyword><keyword>defense</keyword><keyword>immunity</keyword><keyword>plantcellwall</keyword></keywords><dates><year>2014</year></dates><isbn>1664-462X(Print) 1664-462x</isbn><accession-num>24834069</accession-num><urls></urls><custom2>PMC4018530</custom2><electronic-resource-num>10.3389/fpls.2014.00178</electronic-resource-num><remote-database-provider>NLM</remote-database-provider><language>eng</language></record></Cite></EndNote>[7]。果膠主要由α-1,4糖苷鍵連接的半乳糖醛酸(GalA)ADDINEN.CITE<EndNote><Cite><Author>Caffall</Author><Year>2009</Year><RecNum>136</RecNum><DisplayText><styleface="superscript">[8]</style></DisplayText><record><rec-number>136</rec-number><foreign-keys><keyapp="EN"db-id="5pvt25esedv25pevt2hx022jtfx5tsrfwtwz"timestamp="1690442774">136</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Caffall,K.H.</author><author>Mohnen,D.</author></authors></contributors><auth-address>UniversityofGeorgia,DepartmentofBiochemistryandMolecularBiologyandComplexCarbohydrateResearchCenter,Athens,30602,UnitedStates.</auth-address><titles><title>Thestructure,function,andbiosynthesisofplantcellwallpecticpolysaccharides</title><secondary-title>CarbohydrRes</secondary-title><alt-title>Carbohydrateresearch</alt-title></titles><periodical><full-title>CarbohydrRes</full-title><abbr-1>Carbohydrateresearch</abbr-1></periodical><alt-periodical><full-title>CarbohydrRes</full-title><abbr-1>Carbohydrateresearch</abbr-1></alt-periodical><pages>1879-900</pages><volume>344</volume><number>14</number><edition>2009/07/21</edition><keywords><keyword>CellWall/chemistry/metabolism</keyword><keyword>Pectins/*biosynthesis/*chemistry</keyword><keyword>Plants/*metabolism</keyword><keyword>Polysaccharides/chemistry</keyword></keywords><dates><year>2009</year><pub-dates><date>Sep28</date></pub-dates></dates><isbn>0008-6215</isbn><accession-num>19616198</accession-num><urls></urls><electronic-resource-num>10.1016/j.carres.2009.05.021</electronic-resource-num><remote-database-provider>NLM</remote-database-provider><language>eng</language></record></Cite></EndNote>[8]組成,其是細(xì)胞壁的主要成分。在整個(gè)細(xì)胞分離過程中,細(xì)胞壁內(nèi)的果膠網(wǎng)絡(luò)會(huì)發(fā)生顯著的形狀變化和發(fā)育調(diào)節(jié),因此果膠代謝在各種發(fā)育過程中不可或缺ADDINEN.CITEADDINEN.CITE.DATA[9]。多聚半乳糖醛酸酶(polygalacturonase,PG,EC5)是負(fù)責(zé)果膠降解的最大水解酶家族之一,在分解細(xì)胞壁結(jié)構(gòu)方面發(fā)揮著核心作用ADDINEN.CITEADDINEN.CITE.DATA[10,11]。根據(jù)催化過程,PG可分為內(nèi)切多聚半乳糖醛酸酶(endo-PG)、外切多聚半乳糖醛酸酶(exo-PG)和鼠李糖半乳糖苷酶(oligo-PG)ADDINEN.CITEADDINEN.CITE.DATA[12-14]。植物PG基因的鑒定和功能分析顯示,它們參與了植物發(fā)育過程中的許多細(xì)胞分離事件,包括果實(shí)成熟、器官脫落等過程ADDINEN.CITEADDINEN.CITE.DATA[15,16]。值得注意的是,PG基因還與植物對(duì)外部環(huán)境刺激的反應(yīng)(如細(xì)胞粘附和脅迫反應(yīng))密切相關(guān)。例如,在轉(zhuǎn)基因蘋果中過量表達(dá)PG基因會(huì)導(dǎo)致葉片形態(tài)異常和葉片過早脫落,原因是葉片脫落區(qū)的細(xì)胞粘附力顯著降低,導(dǎo)致結(jié)構(gòu)完整性喪失ADDINEN.CITEADDINEN.CITE.DATA[13]。在水稻中,OsBURP16編碼一種PG的前體,其過表達(dá)會(huì)導(dǎo)致果膠含量和細(xì)胞粘附性降低,影響細(xì)胞壁的完整性,同時(shí)提高對(duì)寒冷、鹽度和干旱等非生物脅迫的敏感性ADDINEN.CITE<EndNote><Cite><Author>Li</Author><Year>2014</Year><RecNum>62</RecNum><DisplayText><styleface="superscript">[17]</style></DisplayText><record><rec-number>62</rec-number><foreign-keys><keyapp="EN"db-id="5pvt25esedv25pevt2hx022jtfx5tsrfwtwz"timestamp="1690339808">62</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Li,J.F.</author><author>Zhang,D.</author><author>Sheen,J.</author></authors></contributors><auth-address>1]DepartmentofMolecularBiologyandCenterforComputationalandIntegrativeBiology,MassachusettsGeneralHospital,Boston,Massachusetts,USA.[2]DepartmentofGenetics,HarvardMedicalSchool,Boston,Massachusetts,USA.</auth-address><titles><title>Epitope-taggedprotein-basedartificialmiRNAscreensforoptimizedgenesilencinginplants</title><secondary-title>NatProtoc</secondary-title><alt-title>Natureprotocols</alt-title></titles><periodical><full-title>NatProtoc</full-title><abbr-1>Natureprotocols</abbr-1></periodical><alt-periodical><full-title>NatProtoc</full-title><abbr-1>Natureprotocols</abbr-1></alt-periodical><pages>939-49</pages><volume>9</volume><number>4</number><edition>2014/03/29</edition><keywords><keyword>Arabidopsis/genetics</keyword><keyword>Epitopes/*genetics</keyword><keyword>*GeneSilencing</keyword><keyword>*GeneticTechniques</keyword><keyword>Immunoblotting</keyword><keyword>*MicroRNAs</keyword><keyword>PlantProteins/genetics/immunology</keyword><keyword>Plants/*genetics</keyword><keyword>Protoplasts</keyword></keywords><dates><year>2014</year><pub-dates><date>Apr</date></pub-dates></dates><isbn>1754-2189(Print) 1750-2799</isbn><accession-num>24675734</accession-num><urls></urls><custom2>PMC4208271</custom2><custom6>NIHMS635493interests.</custom6><electronic-resource-num>10.1038/nprot.2014.061</electronic-resource-num><remote-database-provider>NLM</remote-database-provider><language>eng</language></record></Cite></EndNote>[17]。另一項(xiàng)研究表明,在水稻中負(fù)責(zé)編碼細(xì)胞壁定位PG的PSL1基因發(fā)生突變,大大改變了突變體的細(xì)胞壁組成,通過減少滲透脅迫和干旱條件下的水分損失,增強(qiáng)了抗旱性ADDINEN.CITEADDINEN.CITE.DATA[18]。這些研究共同強(qiáng)調(diào)了PG在植物抗逆過程中發(fā)揮重要作用。PG基因家族屬于糖基水解酶28號(hào)家族(GH28),其特征是PG蛋白至少含有一個(gè)GH28結(jié)構(gòu)域(Pfam00295)ADDINEN.CITEADDINEN.CITE.DATA[19-21]。值得注意的是,據(jù)報(bào)道,在擬南芥(Arabidopsisthaliana,At)中,At4G20050蛋白缺乏GH28結(jié)構(gòu)域,但卻具有PG活性ADDINEN.CITEADDINEN.CITE.DATA[22]。植物PG蛋白有四個(gè)保守氨基酸結(jié)構(gòu)域,表示為結(jié)構(gòu)域I-IV。據(jù)推測(cè),結(jié)構(gòu)域I和II參與催化反應(yīng),其保守氨基酸序列分別為“SPNTDGIH”和“GDDC”。結(jié)構(gòu)域III由“CGPGHG”組成,其中的組氨酸殘基(H)被認(rèn)為參與了催化反應(yīng)。同時(shí),結(jié)構(gòu)域IV的氨基酸序列“RIK”可能參與了與底物的羧基端離子互作。因此,這四個(gè)保守結(jié)構(gòu)域是PG活性所必需的,但結(jié)構(gòu)域III的保守性不嚴(yán)格ADDINEN.CITEADDINEN.CITE.DATA[21,23-25]。根據(jù)不同的分類標(biāo)準(zhǔn),不同研究者將PG劃分為不同的分支,Park等人ADDINEN.CITE<EndNote><Cite><Author>Park</Author><Year>2010</Year><RecNum>193</RecNum><DisplayText><styleface="superscript">[26]</style></DisplayText><record><rec-number>193</rec-number><foreign-keys><keyapp="EN"db-id="5pvt25esedv25pevt2hx022jtfx5tsrfwtwz"timestamp="1691892841">193</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Park,Kyong-Cheul</author><author>Kwon,Soon-Jae</author><author>Kim,Nam-Soo</author></authors></contributors><titles><title>Intronlossmediatedstructuraldynamicsandfunctionaldifferentiationofthepolygalacturonasegenefamilyinlandplants</title><secondary-title>Genes&Genomics</secondary-title></titles><periodical><full-title>Genes&Genomics</full-title></periodical><pages>570-577</pages><volume>32</volume><number>6</number><dates><year>2010</year><pub-dates><date>2010/12/01</date></pub-dates></dates><isbn>1976-9571</isbn><urls><related-urls><url>/10.1007/s13258-010-0076-8</url></related-urls></urls><electronic-resource-num>10.1007/s13258-010-0076-8</electronic-resource-num></record></Cite></EndNote>[26]通過進(jìn)化樹和基因結(jié)構(gòu)將擬南芥中的PG劃分為六個(gè)分支(CladeA到F),而楊樹中的PG則被劃分為A、B和C三類ADDINEN.CITEADDINEN.CITE.DATA[27],Yu等則將黃瓜和西瓜中的PG劃分為A~G七類ADDINEN.CITEADDINEN.CITE.DATA[28]。Park等人ADDINEN.CITE<EndNote><Cite><Author>Park</Author><Year>2008</Year><RecNum>75</RecNum><DisplayText><styleface="superscript">[24]</style></DisplayText><record><rec-number>75</rec-number><foreign-keys><keyapp="EN"db-id="5pvt25esedv25pevt2hx022jtfx5tsrfwtwz"timestamp="1690340616">75</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Park,K.C.</author><author>Kwon,S.J.</author><author>Kim,P.H.</author><author>Bureau,T.</author><author>Kim,N.S.</author></authors></contributors><auth-address>DepartmentofBiology,McGillUniversity,Montreal,QCH3A1B1,Canada.</auth-address><titles><title>Genestructuredynamicsanddivergenceofthepolygalacturonasegenefamilyofplantsandfungus</title><secondary-title>Genome</secondary-title><alt-title>Genome</alt-title></titles><periodical><full-title>Genome</full-title><abbr-1>Genome</abbr-1></periodical><alt-periodical><full-title>Genome</full-title><abbr-1>Genome</abbr-1></alt-periodical><pages>30-40</pages><volume>51</volume><number>1</number><edition>2008/03/22</edition><keywords><keyword>AminoAcidSequence</keyword><keyword>Aspergillusoryzae/genetics</keyword><keyword>ConsensusSequence</keyword><keyword>Fungi/enzymology</keyword><keyword>*Genes,Fungal</keyword><keyword>*Genes,Plant</keyword><keyword>GeneticVariation</keyword><keyword>Genomics</keyword><keyword>Introns</keyword><keyword>MolecularSequenceData</keyword><keyword>*MultigeneFamily</keyword><keyword>Oryza/genetics</keyword><keyword>Phylogeny</keyword><keyword>Plants/enzymology</keyword><keyword>Polygalacturonase/chemistry/classification/*genetics</keyword><keyword>SequenceAlignment</keyword></keywords><dates><year>2008</year><pub-dates><date>Jan</date></pub-dates></dates><isbn>0831-2796(Print) 0831-2796</isbn><accession-num>18356937</accession-num><urls></urls><electronic-resource-num>10.1139/g07-093</electronic-resource-num><remote-database-provider>NLM</remote-database-provider><language>eng</language></record></Cite></EndNote>[24]認(rèn)為分支A和分支B含有所有陸生植物的PG,分支E包含從藻類到開花植物的PG,而分支C、D和F則只含有開花植物的PG,其成員可能對(duì)開花植物的特異性器官發(fā)育很重要。不同分支的PG可能具有獨(dú)特的生理功能。有研究提出,一組相關(guān)的PG往往在花和花蕾中表達(dá),而在營(yíng)養(yǎng)組織中表達(dá)的PG則屬于其他組ADDINEN.CITEADDINEN.CITE.DATA[29]。這意味著PG的多樣化功能可能是差異表達(dá)的結(jié)果。這種表達(dá)分歧和/或亞功能化很可能有助于保留PG基因家族的新復(fù)制成員ADDINEN.CITE<EndNote><Cite><Author>Prince</Author><Year>2002</Year><RecNum>223</RecNum><DisplayText><styleface="superscript">[30]</style></DisplayText><record><rec-number>223</rec-number><foreign-keys><keyapp="EN"db-id="5pvt25esedv25pevt2hx022jtfx5tsrfwtwz"timestamp="1704444677">223</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Prince,V.E.</author><author>Pickett,F.B.</author></authors></contributors><auth-address>DepartmentofOrganismalBiologyandAnatomy,TheUniversityofChicago,1027East57thStreet,Chicago,Illinois60615,USA.vprince@</auth-address><titles><title>Splittingpairs:thedivergingfatesofduplicatedgenes</title><secondary-title>NatRevGenet</secondary-title><alt-title>Naturereviews.Genetics</alt-title></titles><periodical><full-title>NatRevGenet</full-title><abbr-1>Naturereviews.Genetics</abbr-1></periodical><alt-periodical><full-title>NatRevGenet</full-title><abbr-1>Naturereviews.Genetics</abbr-1></alt-periodical><pages>827-37</pages><volume>3</volume><number>11</number><edition>2002/11/05</edition><keywords><keyword>Animals</keyword><keyword>*Evolution,Molecular</keyword><keyword>Forecasting</keyword><keyword>*GeneDuplication</keyword><keyword>Genes,Homeobox</keyword><keyword>Genomics/trends</keyword><keyword>Humans</keyword><keyword>Plants/genetics</keyword><keyword>Vertebrates/genetics</keyword></keywords><dates><year>2002</year><pub-dates><date>Nov</date></pub-dates></dates><isbn>1471-0056(Print) 1471-0056</isbn><accession-num>12415313</accession-num><urls></urls><electronic-resource-num>10.1038/nrg928</electronic-resource-num><remote-database-provider>NLM</remote-database-provider><language>eng</language></record></Cite></EndNote>[30]。1.3研究目的及意義草海桐為典型的濱海適生植物,其在多種逆境脅迫下仍可頑強(qiáng)生長(zhǎng),在海岸帶植被恢復(fù)和防風(fēng)固沙等方面發(fā)揮重要作用。然而,有關(guān)其脅迫耐受的分子機(jī)制和相關(guān)基因的研究仍然很少。盡管PG基因在多種植物物種中被廣泛鑒定,而關(guān)于PG是否參與草海桐抗逆響應(yīng)過程和PG在其中發(fā)揮的作用的研究仍未見報(bào)道。為了填補(bǔ)這一空白,首先對(duì)草海桐的PG基因家族進(jìn)行了系統(tǒng)、全面的鑒定,對(duì)它們的進(jìn)化關(guān)系、潛在的調(diào)控關(guān)系、基因結(jié)構(gòu)、保守域和轉(zhuǎn)錄水平進(jìn)行了徹底的分析。本研究在草海桐基因組中共鑒定出40個(gè)PG家族成員。不僅對(duì)草海桐與水稻、擬南芥和萵苣的PG進(jìn)行了系統(tǒng)發(fā)育分析,還對(duì)StPG的基因結(jié)構(gòu)、保守基序、共線性關(guān)系和順式作用元件進(jìn)行了詳細(xì)分析。此外,還分析了不同組織和不同非生物脅迫下StPGs的表達(dá)水平。本研究將為未來(lái)研究其他作物中PG基因的生物學(xué)功能提供有用的信息,同時(shí)為豐富沿海防護(hù)林種植類型、保護(hù)熱帶島嶼植物資源等提供一定的理論支持。材料與方法草海桐基因組PG家族基因成員的鑒定使用何子文等人已經(jīng)公布的草海桐基因組序列數(shù)據(jù)和基因注釋信息文件ADDINEN.CITEADDINEN.CITE.DATA[31],采用兩種方法和四步分析法從草海桐基因組中鑒定PG基因。首先,以擬南芥68條PG蛋白序列為查詢序列ADDINEN.CITEADDINEN.CITE.DATA[28],使用TBtools的BLASTP命令A(yù)DDINEN.CITEADDINEN.CITE.DATA[32],E-value設(shè)置為1e-5,得到草海桐中PG基因家族候選序列。其次,基于擬南芥PG的保守結(jié)構(gòu)域ADDINEN.CITEADDINEN.CITE.DATA[33],從Pfam數(shù)據(jù)庫(kù)中獲得PG蛋白保守序列的隱馬爾可夫模型GH28(PF00295)ADDINEN.CITEADDINEN.CITE.DATA[34,35],通過TBtools軟件的SimpleHMMSearch命令對(duì)獲得的所有PG基因家族候選基因進(jìn)行驗(yàn)證,進(jìn)一步確定該基因家族成員。將上述兩種方法獲得的基因作為草海桐PG候選基因。然后上傳至NCBI(http://www.ncbi.nlm.nih.gov)對(duì)結(jié)構(gòu)域進(jìn)行進(jìn)一步驗(yàn)證ADDINEN.CITEADDINEN.CITE.DATA[36]。除上述方法獲得的PG基因外,還包括At4g20050(AtQRT3),其雖然不含有PG蛋白的任何一個(gè)結(jié)構(gòu)域,但是它已經(jīng)被證明為PG基因ADDINEN.CITEADDINEN.CITE.DATA[22]。因此,At4g20050基因在草海桐基因組中的同源基因單獨(dú)用BLASTP搜索獲得。萵苣基因組數(shù)據(jù)從EnsemblPlants(/index.html)下載ADDINEN.CITEADDINEN.CITE.DATA[37],其PG基因家族成員的調(diào)取方法同上。2.2染色體定位和蛋白質(zhì)理化性質(zhì)分析根據(jù)基因組注釋數(shù)據(jù),使用TBtools軟件的GeneLocationVisualizeformGTF/GFF命令確定并繪制StPG的染色體位置。根據(jù)基因定位,PG被命名為StPG1至StPG40。將鑒定到的PG蛋白質(zhì)序列提交至ExPASy(/)在線工具ADDINEN.CITE<EndNote><Cite><Author>Duvaud</Author><Year>2021</Year><RecNum>261</RecNum><DisplayText><styleface="superscript">[38]</style></DisplayText><record><rec-number>261</rec-number><foreign-keys><keyapp="EN"db-id="5pvt25esedv25pevt2hx022jtfx5tsrfwtwz"timestamp="1711425030">261</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Duvaud,Séverine</author><author>Gabella,Chiara</author><author>Lisacek,Frédérique</author><author>Stockinger,Heinz</author><author>Ioannidis,Vassilios</author><author>Durinx,Christine</author></authors></contributors><titles><title>Expasy,theSwissBioinformaticsResourcePortal,asdesignedbyitsusers</title><secondary-title>NucleicAcidsResearch</secondary-title></titles><periodical><full-title>NucleicAcidsRes</full-title><abbr-1>Nucleicacidsresearch</abbr-1></periodical><pages>W216-W227</pages><volume>49</volume><number>W1</number><dates><year>2021</year></dates><isbn>0305-1048</isbn><urls><related-urls><url>/10.1093/nar/gkab225</url></related-urls></urls><electronic-resource-num>10.1093/nar/gkab225%JNucleicAcidsResearch</electronic-resource-num><access-date>3/26/2024</access-date></record></Cite></EndNote>[38],對(duì)草海桐PG蛋白質(zhì)的理化性質(zhì)進(jìn)行預(yù)測(cè)。主要參數(shù)包括:氨基酸個(gè)數(shù)(aminoacids,aa)、理論等電點(diǎn)(theoreticalisoelectricpoint,PI)、蛋白質(zhì)的分子量(molecularweight,MW)、不穩(wěn)定系數(shù)(Instabilityindex)和親水性平均值(grandaverageofhydropathy,GRAVY)等。使用Cell-Ploc(/bioinf/Cell-PLoc-2/)預(yù)測(cè)PG蛋白質(zhì)的亞細(xì)胞定位ADDINEN.CITE<EndNote><Cite><Author>Chou</Author><Year>2008</Year><RecNum>106</RecNum><DisplayText><styleface="superscript">[39]</style></DisplayText><record><rec-number>106</rec-number><foreign-keys><keyapp="EN"db-id="5pvt25esedv25pevt2hx022jtfx5tsrfwtwz"timestamp="1690349923">106</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Chou,K.C.</author><author>Shen,H.B.</author></authors></contributors><auth-address>GordonLifeScienceInstitute,13784TorreyDelMarDrive,SanDiego,California92130,USA.kcchou@</auth-address><titles><title>Cell-PLoc:apackageofWebserversforpredictingsubcellularlocalizationofproteinsinvariousorganisms</title><secondary-title>NatProtoc</secondary-title><alt-title>Natureprotocols</alt-title></titles><periodical><full-title>NatProtoc</full-title><abbr-1>Natureprotocols</abbr-1></periodical><alt-periodical><full-title>NatProtoc</full-title><abbr-1>Natureprotocols</abbr-1></alt-periodical><pages>153-62</pages><volume>3</volume><number>2</number><edition>2008/02/16</edition><keywords><keyword>Animals</keyword><keyword>Bacteria</keyword><keyword>Cells/chemistry</keyword><keyword>Databases,Protein</keyword><keyword>Humans</keyword><keyword>Internet</keyword><keyword>PatternRecognition,Automated/*methods</keyword><keyword>Plants</keyword><keyword>Proteins/*analysis/genetics</keyword><keyword>SequenceAnalysis,Protein/*methods</keyword><keyword>*Software</keyword><keyword>Structure-ActivityRelationship</keyword><keyword>SubcellularFractions/chemistry</keyword><keyword>Viruses</keyword></keywords><dates><year>2008</year></dates><isbn>1750-2799</isbn><accession-num>18274516</accession-num><urls></urls><electronic-resource-num>10.1038/nprot.2007.494</electronic-resource-num><remote-database-provider>NLM</remote-database-provider><language>eng</language></record></Cite></EndNote>[39]。2.3草海桐PG家族基因的基因結(jié)構(gòu)和保守基序分析使用在線網(wǎng)站MEME(/tools/meme)用于基序分析ADDINEN.CITE<EndNote><Cite><Author>Bailey</Author><Year>2009</Year><RecNum>101</RecNum><DisplayText><styleface="superscript">[40]</style></DisplayText><record><rec-number>101</rec-number><foreign-keys><keyapp="EN"db-id="5pvt25esedv25pevt2hx022jtfx5tsrfwtwz"timestamp="1690349109">101</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Bailey,T.L.</author><author>Boden,M.</author><author>Buske,F.A.</author><author>Frith,M.</author><author>Grant,C.E.</author><author>Clementi,L.</author><author>Ren,J.</author><author>Li,W.W.</author><author>Noble,W.S.</author></authors></contributors><auth-address>InstituteforMolecularBioscience,UniversityofQueensland,Brisbane,Queensland,Australia.t.bailey@.au</auth-address><titles><title>MEMESUITE:toolsformotifdiscoveryandsearching</title><secondary-title>NucleicAcidsRes</secondary-title><alt-title>Nucleicacidsresearch</alt-title></titles><periodical><full-title>NucleicAcidsRes</full-title><abbr-1>Nucleicacidsresearch</abbr-1></periodical><alt-periodical><full-title>NucleicAcidsRes</full-title><abbr-1>Nucleicacidsresearch</abbr-1></alt-periodical><pages>W202-8</pages><volume>37</volume><number>WebServerissue</number><edition>2009/05/22</edition><keywords><keyword>Algorithms</keyword><keyword>BindingSites</keyword><keyword>Databases,Genetic</keyword><keyword>Internet</keyword><keyword>RegulatoryElements,Transcriptional</keyword><keyword>*SequenceAnalysis,DNA</keyword><keyword>*SequenceAnalysis,Protein</keyword><keyword>*Software</keyword><keyword>TranscriptionFactors/metabolism</keyword></keywords><dates><year>2009</year><pub-dates><date>Jul</date></pub-dates></dates><isbn>0305-1048(Print) 0305-1048</isbn><accession-num>19458158</accession-num><urls></urls><custom2>PMC2703892</custom2><electronic-resource-num>10.1093/nar/gkp335</electronic-resource-num><remote-database-provider>NLM</remote-database-provider><language>eng</language></record></Cite></EndNote>[40]?;虻臄?shù)目設(shè)定10個(gè),其余參數(shù)保留為默認(rèn)值。使用TBtools軟件的GeneStructureView(Advanced)功能對(duì)草海桐PG成員的基因結(jié)構(gòu)和保守基序進(jìn)行分析和可視化。2.4草海桐PG基因家族系統(tǒng)進(jìn)化分析為了進(jìn)一步了解物種中PG基因在進(jìn)化過程中的關(guān)系,使用草海桐、水稻、擬南芥和草海桐近緣物種萵苣四個(gè)物種中PG蛋白的氨基酸序列進(jìn)行進(jìn)化樹的構(gòu)建。使用MEGA11.0通過鄰接法(Neighbor-Joining,NJ)法構(gòu)建系統(tǒng)發(fā)育樹,將自展法系數(shù)(Bootstrap)值設(shè)置為1000次ADDINEN.CITE<EndNote><Cite><Author>Caspermeyer</Author><Year>2016</Year><RecNum>103</RecNum><DisplayText><styleface="superscript">[41]</style></DisplayText><record><rec-number>103</rec-number><foreign-keys><keyapp="EN"db-id="5pvt25esedv25pevt2hx022jtfx5tsrfwtwz"timestamp="1690349522">103</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contribu

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論